Molecular Biotechnology

, Volume 45, Issue 2, pp 180–186 | Cite as

Cell-Based Assays for High-Throughput Screening

  • W. Frank An
  • Nicola TollidayEmail author


Cell-based assays represent approximately half of all high-throughput screens currently performed. Here, we review in brief the history and status of high-throughput screening (HTS), and summarize some of the challenges and benefits associated with the use of cell-based assays in HTS. Approaches for successful experimental design and execution of cell-based screens are introduced, including strategies for assay development, implementation of primary and secondary screens, and target identification. In doing so, we hope to provide a comprehensive review of the cell-based HTS process and an introduction to the methodologies and techniques used.


Assay development Cell-based assay High-content screening (HCS) High-throughput screening (HTS) Small-molecule screening Target identification 



We thank Drs. M. Schenone and I. Smukste for insightful discussions on target identification. The study was funded in whole or in part with federal funds from the National Cancer Institute’s Initiative for Chemical Genetics, National Institutes of Health, under Contract no. N01-CO-12400.


  1. 1.
    Hopkins, A. L., & Groom, C. R. (2002). The druggable genome. Nature Reviews Drug Discovery, 1(9), 727–730.CrossRefGoogle Scholar
  2. 2.
    Beggs, M. (2000). HTS—where next. Drug Discovery World, Winter, 25–30.Google Scholar
  3. 3.
    Hertzberg, R. P., & Pope, A. J. (2000). High-throughput screening: New technology for the 21st century. Current Opinion in Chemical Biology, 4(4), 445–451.CrossRefGoogle Scholar
  4. 4.
    Liu, B., Li, S., & Hu, J. (2004). Technological advances in high-throughput screening. American Journal of Pharmacogenomics, 4(4), 263–276.CrossRefGoogle Scholar
  5. 5.
    Grozinger, K., Proudfoot, J., & Hargrave, K. (2006). Discovery and development of nevirapine. In M. S. Chorghade (Ed.), Drug discovery and development, Volume I: Drug discovery (pp. 353–363). Weinheim: Wiley.Google Scholar
  6. 6.
    Kell, D. (1999). Screensavers: Trends in high-throughput analysis. Trends in Biotechnology, 17(3), 89.CrossRefGoogle Scholar
  7. 7.
    Zitzler, J., Link, D., Schafer, R., et al. (2004). High-throughput functional genomics identifies genes that ameliorate toxicity due to oxidative stress in neuronal HT-22 cells: GFPT2 protects cells against peroxide. Molecular & Cellular Proteomics, 3(8), 834–840.CrossRefGoogle Scholar
  8. 8.
    Korherr, C., Gille, H., Schafer, R., et al. (2006). Identification of proangiogenic genes and pathways by high-throughput functional genomics: TBK1 and the IRF3 pathway. PNAS, 103(11), 4240–4245.CrossRefGoogle Scholar
  9. 9.
    Moffat, J., Grueneberg, D. A., Yang, X., et al. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell, 124(6), 1283–1298.CrossRefGoogle Scholar
  10. 10.
    Inglese, J., Auld, D. S., Jadhav, A., et al. (2006). Quantitative high-throughput screening: A titration-based approach that efficiently identifies biological activities in large chemical libraries. PNAS, 103(31), 11473–11478.CrossRefGoogle Scholar
  11. 11.
    Tolliday, N., Clemons, P. A., Ferraiolo, P., et al. (2006). Small molecules, big players: The National Cancer Institute’s Initiative for Chemical Genetics. Cancer Research, 66(18), 8935–8942.CrossRefGoogle Scholar
  12. 12.
    Burns, S., Travers, J., Collins, I., et al. (2006). Identification of small-molecule inhibitors of protein kinase B (PKB/AKT) in an AlphaScreenTM high-throughput screen. Journal of Biomolecular Screening, 11(7), 822–827.CrossRefGoogle Scholar
  13. 13.
    Sudo, K., Yamaji, K., Kawamura, K., et al. (2005). High-throughput screening of low molecular weight NS3-NS4A protease inhibitors using a fluorescence resonance energy transfer substrate. Antiviral Chemistry & Chemotherapy, 16(6), 385–392.Google Scholar
  14. 14.
    Swaney, S., McCroskey, M., Shinabarger, D., et al. (2006). Characterization of a high-throughput screening assay for inhibitors of elongation factor P and ribosomal peptidyl transferase activity. Journal of Biomolecular Screening, 11(7), 736–742.CrossRefGoogle Scholar
  15. 15.
    Allen, M., Reeves, J., & Mellor, G. (2000). High throughput fluorescence polarization: A homogeneous alternative to radioligand binding for cell surface receptors. Journal of Biomolecular Screening, 5(2), 63–69.CrossRefGoogle Scholar
  16. 16.
    Xu, J., Wang, X., Ensign, B., et al. (2001). Ion-channel assay technologies: Quo vadis? Drug Discovery Today, 6(24), 1278–1287.CrossRefGoogle Scholar
  17. 17.
    Parker, G. J., Law, T. L., Lenoch, F. J., et al. (2000). Development of high throughput screening assays using fluorescence polarization: Nuclear receptor-ligand-binding and kinase/phosphatase assays. Journal of Biomolecular Screening, 5(2), 77–88.CrossRefGoogle Scholar
  18. 18.
    Kenny, C. H., Ding, W., Kelleher, K., et al. (2003). Development of a fluorescence polarization assay to screen for inhibitors of the FtsZ/ZipA interaction. Analytical Biochemistry, 323(2), 224–233.CrossRefGoogle Scholar
  19. 19.
    Chambers, C., Smith, F., Williams, C., et al. (2003). Measuring intracellular calcium fluxes in high throughput mode. Combinatorial Chemistry & High Throughput Screening, 6(4), 355–362.Google Scholar
  20. 20.
    Kariv, I., Stevens, M. E., Behrens, D. L., et al. (1999). High throughput quantitation of cAMP production mediated by activation of seven transmembrane domain receptors. Journal of Biomolecular Screening, 4(1), 27–32.CrossRefGoogle Scholar
  21. 21.
    Li, X., Shen, F., Zhang, Y., et al. (2007). Functional characterization of cell lines for high-throughput screening of human neuromedin U receptor subtype 2 specific agonists using a luciferase reporter gene assay. European Journal of Pharmaceutics and Biopharmaceutics [Epub ahead of print].Google Scholar
  22. 22.
    Beck, V., Pfitscher, A., & Jungbauer, A. (2005). GFP-reporter for a high throughput assay to monitor estrogenic compounds. Journal of Biochemical and Biophysical Methods, 64(1), 19–37.CrossRefGoogle Scholar
  23. 23.
    Yarrow, J. C., Totsukawa, G., Charras, G. T., et al. (2005). Screening for cell migration inhibitors via automated microscopy reveals a rho-kinase inhibitor. Chemistry & Biology, 12(3), 385–395.CrossRefGoogle Scholar
  24. 24.
    Eggert, U. S., Kiger, A. A., Richter, C., et al. (2004). Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biology, 2(12), e379.CrossRefGoogle Scholar
  25. 25.
    Krejci, P., Pejchalova, K., & Wilcox, W. R. (2007). Simple, mammalian cell-based assay for identification of inhibitors of the Erk MAP kinase pathway. Investigational New Drugs [Epub ahead of print].Google Scholar
  26. 26.
    Bradley, J., Gill, J., Bertelli, F., et al. (2004). Development and automation of a 384-well cell fusion assay to identify inhibitors of CCR5/CD4-mediated HIV virus entry. Journal of Biomolecular Screening, 9(6), 516–524.CrossRefGoogle Scholar
  27. 27.
    Wunder, F., Stasch, J. P., Hutter, J., et al. (2005). A cell-based cGMP assay useful for ultra-high-throughput screening and identification of modulators of the nitric oxide/cGMP pathway. Analytical Biochemistry, 339(1), 104–112.CrossRefGoogle Scholar
  28. 28.
    Brandish, P. E., Chiu, C. S., Schneeweis, J., et al. (2006). A cell-based ultra-high-throughput screening assay for identifying inhibitors of D-amino acid oxidase. Journal of Biomolecular Screening, 11(5), 481–487.CrossRefGoogle Scholar
  29. 29.
    Barberis, A., Gunde, T., Berset, C., et al. (2005). Yeast as a screening tool. Drug Discovery Today, 2, 187–192.CrossRefGoogle Scholar
  30. 30.
    Balgi, A. D., & Roberge, M. (2009). Screening for chemical inhibitors of heterologous proteins expressed in yeast using a simple growth-restoration assay. Methods in Molecular Biology, 486, 125–138.CrossRefGoogle Scholar
  31. 31.
    Puri, A. W., & Bogyo, M. (2009). Using small molecules to dissect mechanisms of microbial pathogenesis. ACS Chemical Biology, 4(8), 603–616.CrossRefGoogle Scholar
  32. 32.
    Zlitni, S., Blanchard, J. E., & Brown, E. D. (2009). High-throughput screening of model bacteria. Methods in Molecular Biology, 486, 13–28.CrossRefGoogle Scholar
  33. 33.
    Hong, C. C. (2009). Large-scale small-molecule screening using zebrafish embryos. Methods in Molecular Biology, 486, 43–56.CrossRefGoogle Scholar
  34. 34.
    Zon, L. I., & Peterson, R. T. (2005). In vivo drug discovery in the zebrafish. Nature Reviews. Drug Discovery, 4(1), 35–44.CrossRefGoogle Scholar
  35. 35.
    O’Rourke, E. J., Conery, A. L., & Moy, T. I. (2009). Whole-animal high-throughput screens: The C. Elegans model. Methods In Molecular Biology, 486, 57–76.CrossRefGoogle Scholar
  36. 36.
    Moy, T. I., Conery, A. L., Larkins-Ford, J., Wu, G., Mazitschek, R., Casadei, G., et al. (2009). High-throughput screen for novel antimicrobials using a whole animal infection model. ACS Chemical Biology, 4(7), 527–533.CrossRefGoogle Scholar
  37. 37.
    Kwok, T. C., Ricker, N., Fraser, R., Chan, A. W., Burns, A., Stanley, E. F., et al. (2006). A small-molecule screen in C. Elegans yields a new calcium channel antagonist. Nature, 441(7089), 91–95.CrossRefGoogle Scholar
  38. 38.
    Agee, A., & Carter, D. (2009). Whole-organism screening: Plants. Methods in Molecular Biology, 486, 77–96.CrossRefGoogle Scholar
  39. 39.
    Norambuena, L., Raikhel, N. V., & Hicks, G. R. (2009). Chemical genomics approaches in plant biology. Methods in Molecular Biology, 553, 345–354.CrossRefGoogle Scholar
  40. 40.
    An, F. (2009). Fluorescence-based assays. Methods in Molecular Biology, 486, 97–107.CrossRefGoogle Scholar
  41. 41.
    Taylor, D. L., Haskins, J. R., & Giuliano, K. A. (Eds.). (2006). High content screening—A powerful approach to systems cell biology and drug discovery. Methods in Molecular Biology (p. 356). Totowa, NJ: Humana Press.Google Scholar
  42. 42.
    Sklar, L. A., Carter, M. B., & Edwards, B. S. (2007). Flow cytometry for drug discovery, receptor pharmacology and high-throughput screening. Current Opinion in Pharmacology, 7(5), 527–534.CrossRefGoogle Scholar
  43. 43.
    Edwards, B. S., Young, S. M., Ivnitsky-Steele, I., Ye, R. D., Prossnitz, E. R., & Sklar, L. A. (2009). High-content screening: Flow cytometry analysis. Methods in Molecular Biology, 486, 151–165.CrossRefGoogle Scholar
  44. 44.
    Zhang, J.-H., Chung, T. D. Y., & Oldenburg, K. R. (1999). A simple statistical parameter for use in evaluation and validation of high throughput screening assays. Journal of Biomolecular Screening, 4(2), 67–73.CrossRefGoogle Scholar
  45. 45.
    Josiah, S. (2009). Interpretation of uniform-well readouts. Methods in Molecular Biology, 486, 177–192.CrossRefGoogle Scholar
  46. 46.
    Carpenter, A. E. (2009). Extracting rich information from images. Methods in Molecular Biology, 486, 193–211.CrossRefGoogle Scholar
  47. 47.
    Harding, M. W., Handschumacher, R. E., & Speicher, D. W. (1986). Isolation and amino acid sequence of cyclophilin. The Journal Of Biological Chemistry, 261(18), 8547–8555.Google Scholar
  48. 48.
    Handschumacher, R. E., Harding, M. W., Rice, J., et al. (1984). Cyclophilin: A specific cytosolic binding protein for cyclosporin A. Science, 226(4674), 544–547.CrossRefGoogle Scholar
  49. 49.
    Fischer, G., Wittmann-Liebold, B., Lang, K., et al. (1989). Cyclophilin and peptidyl-prolyl cis–trans isomerase are probably identical proteins. Nature, 337(6206), 476–478.CrossRefGoogle Scholar
  50. 50.
    Takahashi, N., Hayano, T., & Suzuki, M. (1989). Peptidyl-prolyl cis–trans isomerase is the cyclosporin A-binding protein cyclophilin. Nature, 337(6206), 473–475.CrossRefGoogle Scholar
  51. 51.
    Lane, W. S., Galat, A., Harding, M. W., et al. (1991). Complete amino acid sequence of the FK506 and rapamycin binding protein, FKBP, isolated from calf thymus. Journal of Protein Chemistry, 10(2), 151–160.CrossRefGoogle Scholar
  52. 52.
    Harding, M. W., Galat, A., Uehling, D. E., et al. (1989). A receptor for the immunosuppressant FK506 is a cis–trans peptidyl-prolyl isomerase. Nature, 341(6244), 758–760.CrossRefGoogle Scholar
  53. 53.
    Siekierka, J. J., Hung, S. H. Y., Poe, M., et al. (1989). A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin. Nature, 341(6244), 755–757.CrossRefGoogle Scholar
  54. 54.
    Taunton, J., Hassig, C. A., & Schreiber, S. L. (1996). A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science, 272(5260), 408–411.CrossRefGoogle Scholar
  55. 55.
    Burdine, L., & Kodadek, T. (2004). Target identification in chemical genetics: the (often) missing link. Chemistry & Biology, 11(5), 593–597.CrossRefGoogle Scholar
  56. 56.
    Rix, U., & Superti-Furga, G. (2009). Target profiling of small molecules by chemical proteomics. Nature Chemical Biology, 5(9), 616–624.CrossRefGoogle Scholar
  57. 57.
    Colca, J. R., & Harrigan, G. G. (2004). Photo-affinity labeling strategies in identifying the protein ligands of bioactive small molecules: Examples of targeted synthesis of drug analog photoprobes. Combinatorial Chemistry & High Throughput Screening, 7(7), 699–704.Google Scholar
  58. 58.
    Kolb, H. C., & Sharpless, K. B. (2003). The growing impact of click chemistry on drug discovery. Drug Discovery Today, 8(24), 1128–1137.CrossRefGoogle Scholar
  59. 59.
    Speers, A. E., & Cravatt, B. F. (2004). Profiling enzyme activities in vivo using click chemistry methods. Chemistry & Biology, 11(4), 535–546.CrossRefGoogle Scholar
  60. 60.
    Maly, D. J., Choong, I. C., & Ellman, J. A. (2000). Combinatorial target-guided ligand assembly: Identification of potent subtype-selective c-Src inhibitors. PNAS, 97(6), 2419–2424.CrossRefGoogle Scholar
  61. 61.
    Sem, D. S., Bertolaet, B., Baker, B., et al. (2004). Systems-based design of bi-ligand inhibitors of oxidoreductases: Filling the chemical proteomic toolbox. Chemistry & Biology, 11(2), 185–194.Google Scholar
  62. 62.
    Profit, A. A., Lee, T. R., & Lawrence, D. S. (1999). Bivalent inhibitors of protein tyrosine kinases. Journal of the American Chemical Society, 121(2), 280–283.CrossRefGoogle Scholar
  63. 63.
    Ong, S. E., Blagoev, B., Kratchmarova, I., et al. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Molecular & Cellular Proteomics, 1(5), 376–386.CrossRefGoogle Scholar
  64. 64.
    Ong, S. E., Schenone, M., Margolin, A. A., Li, X., Do, K., Doud, M. K., et al. (2009). Identifying the proteins to which small-molecule probes and drugs bind in cells. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4617–4622.CrossRefGoogle Scholar
  65. 65.
    Lum, P. Y., Armour, C. D., Stepaniants, S. B., et al. (2004). Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell, 116(1), 121–137.CrossRefGoogle Scholar
  66. 66.
    Giaever, G., Flaherty, P., Kumm, J., et al. (2004). Chemogenomic profiling: Identifying the functional interactions of small molecules in yeast. PNAS, 101(3), 793–798.CrossRefGoogle Scholar
  67. 67.
    Luesch, H. (2006). Towards high-throughput characterization of small molecule mechanisms of action. Molecular Biosystems, 2(12), 609–620.CrossRefGoogle Scholar
  68. 68.
    Kley, N. (2004). Chemical dimerizers and three-hybrid systems: Scanning the proteome for targets of organic small molecules. Chemistry & Biology, 11(5), 599.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Chemical Biology PlatformThe Broad InstituteCambridgeUSA

Personalised recommendations