Abstract
Microsatellites are a ubiquitous class of simple repetitive DNA sequences, which are widespread in both eukaryotic and prokaryotic genomes. The use of microsatellites as polymorphic DNA markers has considerably increased both in the number of studies and in the number of organisms, primarily for genetic mapping, studying genomic instability in cancer, population genetics, forensics, conservation biology, molecular anthropology and in the studies of human evolutionary history. Although simple sequence repeats have been extensively used in studies encompassing varied areas of genetics, the mutation dynamics of these genome regions is still not well understood. The present review focuses on the mutational dynamics of microsatellite DNA with special reference to mutational mechanisms and their role in microsatellite evolution.
Similar content being viewed by others
References
Field, D., & Wills, C. (1998). Abundant microsatellite polymorphism in Saccharomyces cerevisiae, and the different distributions of microsatellites in eight prokaryotes and S. cerevisiae, result from strong mutation pressures and a variety of selective forces. Proceedings of the National Academy of Sciences of the United States of America, 95, 1647–1652.
Toth, G., Gaspari, Z., & Jurka, J. (2000). Microsatellites in different eukaryotic genomes: Survey and analysis. Genome Research, 10, 967–981.
Richard, G. F., & Pâques, F. (2000). Mini- and microsatellite expansions: The recombination connection. EMBO Reports, 11, 122–126.
Oliveira, E. J., Padua, J. G., Zucchi, M. I., Vencovsky, R., & Vieira, M. L. C. (2006). Origin, evolution and genome distribution of microsatellites. Genetics and Molecular Biology, 29, 294–307.
Zane, L., Bargelloni, L., & Patarnello, T. (2002). Strategies for microsatellite isolation: A review. Molecular Ecology, 11, 1–16.
Zwettler, D., Vieria, C. P., & Schlotterer, C. (2002). Polymorphic microsatellites in Antirrhinum (Scrophulariaceae), a genus with low levels of nuclear sequence variability. Journal of Heredity, 93, 217–221.
Estoup, A., & Angers, B. (1998). Microsatellites and minisatellites for molecular ecology: Theoretical and empirical considerations. In G. R. Carvalho (Ed.), Advances in molecular ecology (pp. 55–86). Washington, D.C.: IOS Press.
Barker, G. C. (2002). Microsatellite DNA: A tool for population genetic analysis. Transactions of the Royal Society of Tropical Medicine and Hygeine, 96, S21–S24.
Fuentes, F. F., Martinez, E. A., Hinrichsen, P. V., Jellen, E. N., & Maughan, P. J. (2009). Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers. Conservation Genetics, 10, 369–377.
Beckmann, J. S., & Weber, J. L. (1992). Survey of human and rat microsatellites. Genomics, 12, 627–631.
Calderon, I., Ortega, N., Duran, S., Becerro, M., Pascual, M., & Turon, X. (2007). Finding the relevant scale: Clonality and genetic structure in a marine invertebrate (Crambe crambe, Porifera). Molecular Ecology, 16, 1799–1810.
Andersen, D. H., Pertoldi, C., Loeschcke, V., & Scali, V. (2005). Characterization of microsatellite loci in the stick insects Bacillus rossius rossius, Bacillus rossius redtenbacheri and Bacillus whitei (Insecta: Phasmatodea). Molecular Ecology Notes, 5, 576–578.
Sarhan, A. (2006). Isolation and characterization of five microsatellite loci in the Glanville fritillary butterfly (Melitaea cinxia). Molecular Ecology Notes, 6, 163–164.
Rosas, P. D. A. R., Segura, E. L., & Garcia, B. A. (2007). Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: Its implication in assessing the effectiveness of Chagas’ disease vector control programmes. Molecular Ecology, 16, 1401–1412.
Kenchington, E. L., Patwary, M. U., Zouros, E., & Bird, C. J. (2006). Genetic differentiation in relation to marine landscape in a broadcast-spawning bivalve mollusc (Placopecten magellanicus). Molecular Ecology, 15, 1781–1796.
Moran, P., Teel, D. J., LaHood, E. S., Drake, J., & Kalinowski, S. (2006). Standardising multi-laboratory microsatellite data in Pacific salmon: An historical view of the future. Ecology of Freshwater Fish, 15, 597–605.
Bucklin, K. A., Banks, M. A., & Hedgecock, D. (2007). Assessing genetic diversity of protected coho salmon (Oncorhynchus kisutch) populations in California. Canadian Journal of Fisheries and Aquatic Sciences, 64, 30–42.
Glenn, T. C., Dessauer, H. C., & Braun, M. J. (1998). Characterization of microsatellite DNA loci in American alligators. Copeia, 3, 591–601.
Galbusera, P., van Dongen, S., & Matthysen, E. (2000). Cross-species amplification of microsatellite primers in passerine birds. Conservation Genetics, 1, 163–168.
Hayes, M. A., Britten, H. B., & Barzen, J. A. (2006). Extra-pair fertilizations in sandhill cranes revealed using microsatellite DNA markers. The Condor, 108, 970–976.
Sainudiin, R., Durrett, R. T., Aquadro, C. F., & Nielsen, R. (2004). Microsatellite mutation models insights from a comparison of humans and chimpanzees. Genetics, 168, 383–395.
Pinto, L. R., Vieiria, L. R., Souze, C. L., Jr, & Souza, A. P. (2003). Reciprocal recurrent selection effects on the genetic structure of tropical maize populations assessed at microsatellite loci. Genetics and Molecular Biology, 26, 355–364.
Odeny, D. A., Jayashree, B., Ferguson, M., Crouch, J., & Gebhardt, J. (2007). Development, characterization and utilization of microsatellite markers in pigeonpea. Plant Breeding, 126, 130–136.
Christopher, M., Mace, E., Jordan, D., David, R., Paul, M., Delacy, I., et al. (2007). Applications of pedigree-based genome mapping in wheat and barley breeding programs. Euphytica, 154, 307–316.
Goldstein, D. B., & Schlotterer, C. (1999). Microsatellites: Evolution and applications. Oxford: Oxford University Press.
Cummings, C. J., & Zoghbi, H. Y. (2000). Trinucleotide repeats: Mechanisms and pathophysiology. Annual Review of Genomics and Human Genetics, 1, 281–328.
Masino, L., & Pastore, A. (2001). A structural approach to trinucleotide expansion diseases. Brain Research Bulletin, 56, 183–189.
Kovtun, I. V., Goellner, G., & McMurray, C. T. (2001). Structural features of trinucleotide repeats associated with DNA expansion. Biochemistry and Cell Biology, 79, 325–326.
Everett, C. M., & Wood, N. W. (2004). Trinucleotide repeats and neurodegenerative disease. Pain, 127, 2385–2405.
Oda, S., Maehara, Y., Sumiyoshi, Y., & Sugimachi, K. (2002). Microsatellite instability in cancer: What problems remain unanswered? Surgery, 131, S55–S62.
Shaikh, L., Sagebiel, R. W., Ferreira, C. M. M., Nosrati, M., Miller, J. R., & Kashani-Sabet, M. (2005). The role of microsatellites as a prognostic factor in malignant melanoma. Archives of Dermatology, 141, 739–742.
Powell, W., Machray, G., & Provan, G. (1996). Polymorphism revealed by simple sequence repeats. Trends in Plant Science, 1, 215–222.
Maughan, P. J., Saghai-Maroof, M. A., & Buss, G. R. (1995). Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome, 38, 715–723.
Hancock, J. M. (1999). Microsatellites and other simple sequences: Genomic context and mutational mechanisms. In D. B. Goldstein & C. Schlotterer (Eds.), Microsatellites: Evolution and applications (pp. 1–9). Oxford: Oxford University Press.
Morgante, M., Hanafey, M., & Powell, W. (2002). Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nature Genetics, 30, 194–200.
Schlötterer, C., & Harr, B. (2000). Drosophila virilis has long and highly polymorphic microsatellites. Molecular Biology and Evolution, 17, 1641–1646.
Katti, M. V., Ranjekar, P. K., & Gupta, V. S. (2001). Differential distribution of simple sequence repeats in eukaryotic genome sequences. Molecular Biology and Evolution, 18, 1161–1167.
Sharma, P. C., Grover, A., & Kahl, G. (2007). Mining microsatellites in eukaryotic genomes. Trends in Biotechnology, 25, 490–498.
Cruz, F., Perez, M., & Presa, P. (2005). Distribution and abundance of microsatellites in the genome of bivalves. Gene, 346, 241–247.
Brandstrom, M., & Ellegren, S. (2008). Genome wide analysis of microsatellite polymorphism in chicken circumventing the ascertainment bias. Genome Research, 18, 881–887.
Ellegren, H. (2000). Microsatellite mutations in the germline: Implications for evolutionary inference. Trends in Genetics, 16, 551–558.
Ellegren, H. (2004). Microsatellites: Simple sequences with complex evolution. Nature Reviews Genetics, 5, 435–445.
Webster, M. T., Smith, N. G., & Ellegren, H. (2002). Microsatellite evolution inferred from human–chimpanzee genomic sequence alignments. Proceedings of the National Academy of Sciences of the United States of America, 99, 8748–8753.
Chakraborty, R., Kimmel, M., Stivers, D. N., Davison, L. J., & Deka, R. (1997). Relative mutation rates at di-, tri-, and tetranucleotide microsatellite loci. Proceedings of the National Academy of Sciences of the United States of America, 94, 1041–1046.
Baldi, P., & Baisnee, P. F. (2000). Sequence analysis by additive scales: DNA structure for sequences and repeats of all lengths. Bioinformatics, 16, 865–889.
Rolfsmeier, M. L., & Lahue, R. S. (2000). Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae. Molecular Cell Biology, 20, 173–180.
Pearson, C. E., Nichol-Edamura, K., & Cleary, J. D. (2005). Repeat instability: Mechanisms of dynamic mutations. Nature Reviews Genetics, 6, 729–742.
Krasilnikova, M. M., Samadashwily, G. M., Krasilnikov, A. S., & Mirkin, S. M. (1998). Transcription through a simple DNA repeat blocks replication elongation. EMBO Journal, 17, 5095–5102.
Rose, O., & Falush, D. (1998). A threshold size for microsatellite expansion. Molecular Biology and Evolution, 15, 613–615.
Schlotterer, C. (2000). Evolutionary dynamics of microsatellite DNA. Chromosoma, 109, 365–371.
Sia, E. A., Butler, C. A., Dominska, M., Greenwell, P., Fox, T. D., & Petes, T. D. (2000). Analysis of microsatellite mutations in the mitochondrial DNA of Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 97, 250–255.
Li, Y. C., Korol, A. B., Fahima, T., Beiles, A., & Novo, E. (2002). Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review. Molecular Ecology, 11, 2453–2465.
Weber, J., & Wong, C. (1993). Mutation of human short tandem repeats. Human Molecular Genetics, 2, 1123–1128.
Lai, Y., & Sun, F. (2003). The relationship between microsatellite slippage mutation rate and the number of repeat units. Molecular Biology and Evolution, 20, 2123–2131.
Bachtrog, D., Agis, M., Imhof, M., & Schlotterer, C. (2000). Microsatellite variability differs between dinucleotide repeat motifs-evidence from Drosophila melanogaster. Molecular Biology and Evolution, 17, 1277–1285.
Primmer, C. R., Ellegren, H., Saino, N., & Moller, A. P. (1996). Directional evolution in germline microsatellite mutations. Nature Genetics, 13, 391–393.
Ellegren, H. (2000). Heterogeneous mutation processes in humans microsatellite sequences. Nature Genetics, 24, 400–402.
Whittaker, J. C., Harbord, R. M., Boxall, N., Mackay, I., & Dawson, G. (2003). Likelihood-based estimation of microsatellite mutation rates. Genetics, 164, 781–787.
Seyfert, A. L., Cristescu, M. E., Frisse, L., Schaack, S., Thomas, W. K., & Lynch, M. (2008). The rate and spectrum of microsatellite mutation in Caenorhabditis elegans and Daphnia pulex. Genetics, 178, 2113–2121.
Amos, W., Flint, J., & Xu, X. (2008). Heterozygosity increases microsatellite mutation rate, linking it to demographic history. BMC Genetics, 9, 72.
Di Rienzo, A., Peterson, A. C., Garza, J. C., Valdes, A. M., & Slatkin, M. (1994). Mutational processes of simple-sequence repeat loci in human populations. Proceedings of the National Academy of Sciences of the United States of America, 91, 3166–3170.
Harr, B., Zangerl, B., Brem, G., & Schlotterer, C. (1998). Conservation of locus specific microsatellite variability across species: A comparison of two Drosophila sibling species D. melanogaster and D. simulans. Molecular Biology and Evolution, 15, 176–184.
Buschiazzo, E., & Gemmell, N. J. (2006). The rise, fall and renaissance of microsatellites in eukaryotic genomes. Bioessays, 28, 1040–1050.
Goldstein, D., & Clark, A. (1995). Microsatellite variation in North American populations of Drosophila melanogaster. Nucleic Acids Research, 23, 3882–3886.
Wierdl, M., Dominska, M., & Petes, T. D. (1997). Microsatellite instability in yeast: Dependence on the length of the microsatellite. Genetics, 146, 769–779.
Brinkmann, B., Klintschar, M., Neuhuber, F., Huhne, J., & Rolf, B. (1998). Mutation rate in human microsatellites: Influence of the structure and length of the tandem repeat. The American Journal of Human Genetics, 62, 1408–1415.
Hutter, C. M., Schug, M. D., & Aquadro, C. F. (1998). Microsatellite variation in Drosophila melanogaster and Drosophila simulans: A reciprocal test of the ascertainment bias hypothesis. Molecular Biology and Evolution, 15, 1620–1636.
Schlotterer, C., Ritter, R., Harr, B., & Brem, G. (1998). High mutation rates of a long microsatellite allele in Drosophila melanogaster provides evidence for allele-specific mutation rates. Molecular Biology and Evolution, 15, 1269–1274.
Schug, M., Hutter, C., Wetterstrand, K., Gaudette, M., & Mackay, T. (1998). The mutation rates of di-, tri- and tetranucleotide repeats in Drosophila melanogaster. Molecular Biology and Evolution, 15, 1751–1760.
Phillips, N., Saloman, M., Custer, A., Ostrow, D., & Baer, C. F. (2009). Spontaneous mutational and standing genetic co(variation) at dinucleotide microsatellites in Caenorhabditis briggsae and Caenorhabditis elegans. Molecular Biology and Evolution, 26, 659–669.
Primmer, C. R., Saino, N., Moller, A. P., & Ellegren, H. (1998). Unraveling the processes of microsatellite evolution through analysis of germ line mutations in barn swallows Hirundo rustica. Molecular Biology and Evolution, 15, 1047–1054.
Vigouroux, Y., Jaqueth, J. S., Matsouka, Y., Smith, O. S., & Beavis, W. F. (2002). Rate and pattern of mutation at microsatellite loci in maize. Molecular Biology and Evolution, 19, 1251–1260.
Shinde, D., Lai, Y. L., Sun, F. Z., & Arnheim, N. (2003). Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites. Nucleic Acids Research, 31, 974–980.
Coenye, T., & Vandamme, P. (2005). Characterization of mononucleotide repeats in sequenced prokaryotic genomes. DNA Research, 12, 221–233.
Zhu, Y., Queller, D. C., & Strassmann, J. E. (2000). A phylogenetic perspective on sequence evolution in microsatellite loci. Journal of Molecular Evolution, 50, 324–338.
Dettman, J. R., & Taylor, J. W. (2004). Mutation and evolution of microsatellite loci in Neurospora. Genetics, 168, 1231–1248.
Bell, G. I., & Jurka, J. (1997). The length distribution of perfect dimer repetitive DNA is consistent with its evolution by an unbiased single step mutation process. Journal of Molecular Evolution, 44, 414–421.
Kruglyak, S., Durrett, R. T., Schug, M. D., & Aquadro, C. F. (1998). Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proceedings of the National Academy of Sciences of the United States of America, 95, 10774–10778.
Kruglyak, S., Durrett, R. T., Schug, M. D., & Aquadro, C. F. (2000). Distribution and abundance of microsatellites in the yeast genome can be explained by a balance between slippage events and point mutations. Molecular Biology and Evolution, 17, 1210–1219.
Calabrese, P. P., Durrett, R. T., & Aquadro, C. F. (2001). Dynamics of microsatellite divergence. Genetics, 159, 839–852.
Xu, X., Peng, M., Fang, Z., & Xu, X. (2000). The direction of microsatellite mutations is dependent upon allele length. Nature Genetics, 24, 396–399.
Huang, Q. Y., Xu, F. H., Shen, H., Deng, H. Y., Liu, Y. J., Liu, Y. Z., et al. (2002). Mutation patterns at dinucleotide microsatellite loci in humans. The American Journal of Human Genetics, 70, 625–634.
Eisen, J. A. (1999). Mechanistic basis for microsatellite instability. In D. B. Goldstein & C. Schlotterer (Eds.), Microsatellites: Evolution and applications (pp. 34–48). Oxford: Oxford University Press.
Messier, M., Li, S. H., & Stewart, C. B. (1996). The birth of microsatellites. Nature, 381, 483.
Eckert, K. A., & Hile, S. E. (2009). Every microsatellite is different: Intrinsic DNA features dictate mutagenesis of common microsatellites present in the human genome. Molecular Carcinigenesis, 48, 379–388.
Pupko, T., & Graur, D. (1999). Evolution of microsatellites in the yeast Saccharomyces cerevisiae: Role of length and number of repeated units. Journal of Molecular Evolution, 48, 313–316.
Halangoda, A., Still, J. G., Hill, K. A., & Sommer, S. S. (2001). Spontaneous microdeletions and microinsertions in a transgenic mouse mutation detection system: Analysis of age, tissue, and sequence specificity. Environmental and Molecular Mutagenesis, 37, 311–323.
Schlötterer, C., & Zangerl, B. (1999). The use of imperfect microsatellites for DNA fingerprinting and population genetics. In J. T. Epplen & T. Lubjuhn (Eds.), DNA profiling and DNA fingerprinting (pp. 153–165). Switzerland, Basel: Birkhäuser.
Boyer, J. C., Yamada, N. A., Roques, C. N., Hatch, S. B., Riess, K., & Farber, R. A. (2002). Sequence dependent instability of mononucleotide microsatellites in cultured mismatch repair proficient and deficient mammalian cells. Human Molecular Genetics, 11, 703–713.
Sia, E. A., Jinks-Robertson, S., & Petes, T. D. (1997). Genetic control of microsatellite instability. Mutation Research, 383, 61–70.
Jin, L., Macaubas, C., Hallmayer, J., Kimura, A., & Mignot, E. (1996). Mutation rate varies among alleles at a microsatellite locus: Phylogenetic evidence. Proceedings of the National Academy of Sciences of the United States of America, 93, 15285–15288.
Zhu, Y., Strassmann, J. E., & Queller, D. C. (2000). Insertions, substitutions, and the origin of microsatellites. Genetics Research, 76, 227–236.
Brock, G. J., Anderson, N. H., & Monckton, D. G. (1999). Cis-acting modifiers of expanded CAG/CTG triplet repeat expandability: Associations with flanking GC content and proximity to CpG islands. Human Molecular Genetics, 8, 1061–1067.
Metzgar, D., Bytof, J., & Wills, C. (2000). Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Research, 10, 72–80.
Glenn, T. C., Stephan, W., Dessauer, H. C., & Braun, M. J. (1996). Allelic diversity in alligator microsatellite loci is negatively correlated with GC content of flanking sequences and evolutionary conservation of PCR amplifiability. Molecular Biology and Evolution, 13, 1151–1154.
Balloux, F., Ecoffey, E., Fumagalli, L., Goudet, J., Wyttenback, A., & Hausser, J. (1998). Microsatellite conservation, polymorphism and GC content in shrews of the genus Sorex (Insectivora, Mammalia). Molecular Biology and Evolution, 15, 473–475.
Begun, D. J., & Aquadro, C. F. (1992). Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature, 356, 519–520.
Schug, M., Hutter, C. M., Wetterstrand, K. A., Gaudette, M. S., Mackay, T. F., & Aquadro, C. F. (1998). Mutation and evolution of microsatellites in Drosophila melanogaster. Genetica, 102(103), 359–367.
Michalakis, Y., & Veuille, M. (1996). Length variation of CAG/CAA trinucleotide repeats in natural populations of Drosophila melanogaster and its relation to the recombination rate. Genetics, 143, 1713–1725.
Schug, M., Mackay, T. F. C., & Aquadro, C. F. (1997). Low mutation rates of microsatellite loci in Drosophila melanogaster. Nature Genetics, 15, 99–102.
Payseur, B. A., & Nachman, M. W. (2000). Microsatellite variation and recombination rate in the human genome. Genetics, 156, 1285–1298.
Primmer, C. R., Raudsepp, T., Chowdhary, B. P., Mbller, A. P., & Ellegren, H. (1997). Low frequency of microsatellites in the avian genome. Genome Research, 7, 471–782.
Pearson, C. E., & Sinden, R. R. (1998). Trinucleotide repeat DNA structures: Dynamic mutations from dynamic DNA. Current Opinions in Structural Biology, 8, 321–330.
Sinden, R. R. (1999). Trinucleotide repeats: Biological implications of the DNA structures associated with disease-causing triplet repeats. The American Journal of Human Genetics, 64, 346–353.
Ellegren, H. (2002). Microsatellite evolution: A battle between replication slippage and point mutation. Trends in Genetics, 18, 70.
Li, Y. C., Korol, A. B., Fahima, T., & Novo, E. (2004). Microsatellites within genes: Structure, function and evolution. Molecular Biology and Evolution, 21, 991–1007.
Alba, M. M., Santibáñez-Koref, M. F., & Hancock, J. M. (2001). The comparative genomics of polyglutamine repeats: Extreme difference in the codon organization of repeat-encoding region between mammals and Drosophila. Journal of Molecular Evolution, 52, 249–259.
Ellegren, H. (2002). Mismatch repair and mutational bias in microsatellite DNA. Trends in Genetics, 18, 552.
Streisinger, G., & Owen, J. (1985). Mechanisms of spontaneous and induced frameshift mutation in bacteriophage T4. Genetics, 109, 633–659.
Schlotterer, C., & Tautz, D. (1992). Slippage synthesis of simple sequence DNA. Nucleic Acids Research, 20, 211–215.
Strand, M., Prolla, T. A., Liskay, R. M., & Petes, T. D. (1993). Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature, 365, 274–276.
Li, Y. C., Röder, M. S., & Fahima, T. (2002). Climatic effect on microsatellite diversity in wild emmer wheat, Triticum dicoccoides, at Yehudiyya microsite, Israel. Heredity, 89, 127–132.
Kolodner, R. D., & Marsischky, G. T. (1999). Eukaryotic DNA mismatch repair. Current Opinions in Genetics and Development, 9, 89–96.
Atkin, N. B. (2001). Microsatellite instability. Cytogenetics and Cell Genetics, 92, 177–181.
Chang, D. K., Metzgar, D., Wills, C., & Boland, C. R. (2001). Microsatellites in the eukaryotic DNA mismatch repair genes as modulators of evolutionary mutation rate. Genome Research, 11, 1145–1146.
Harr, B., Todorova, J., & Schlotterer, C. (2002). Mismatch repair-driven mutational bias in D. melanogaster. Molecular Cell, 10, 199–205.
Boyer, J. C., Umar, A., & Risinger, J. I. (1995). Microsatellite instability, mismatch repair deficiency, and genetic defects in human cancer cell lines. Cancer Research, 55, 6063–6070.
Clark, A. B., Cook, M. E., Tran, H. T., Gordenin, D. A., Resnick, M. A., & Kunkel, T. A. (1999). Functional analysis of human MutSalpha and MutSbeta complexes in yeast. Nucleic Acids Research, 27, 736–742.
Jaworski, A., Rosche, W. A., & Gellibolian, R. (1995). Mismatch repair in Escherichia coli enhances instability of (CTG)n triplet repeats from human hereditary diseases. Proceedings of the National Academy of Sciences of the United States of America, 92, 11019–11023.
Schumacher, S., Fuchs, R. P. P., & Bichara, M. (1998). Expansion of CTG repeats from human disease genes is dependent upon replication mechanisms in Escherichia coli: The effect of long patch mismatch repair revisited. Journal of Molecular Biology, 279, 1101–1110.
Matic, I., Radman, M., & Taddei, F. (1997). Highly variable mutation rates in commensal and pathogenetic Escherichia coli. Science, 277, 1833–1834.
Parniewski, P., Jaworski, A., Wells, R., & Bowater, R. (2000). Length of CTG CAG repeats determines the influence of mismatch repair on genetic instability. Journal of Molecular Biology, 299, 865–874.
Charlesworth, B., Sniegowski, P., & Stephan, W. (1994). The evolutionary dynamics of repetitive DNA in eukaryotes. Nature, 371, 215–220.
Brohede, J., & Ellegren, H. (1999). Microsatellite evolution: Polarity of substitutions within repeats and neutrality of flanking sequences. Proceedings of the Royal Society of London, 266, 825–833.
Jakupciak, J. P., & Wells, R. D. (2000). Gene conversion (recombination) mediates expansions of CTG.CAG repeats. Journal of Biological Chemistry, 275, 4003–4013.
Bagshaw, A. T. M., Pitt, J. P. W., & Gemmell, N. J. (2008). High frequency of microsatellites in Saccharomyces cerevisiae meiotic recombination hotspots. BMC Genomics, 9, 49.
Myers, S., Bottolo, L., Freeman, C., McVean, G., & Donnelly, P. (2005). A fine-scale map of recombination rates and hotspots across the human genome. Science, 310, 321–324.
Schultes, N. P., & Szostak, J. W. (1991). A poly(dA.dT) tract is a component of the recombination initiation site at the ARG4 locus in Saccharomyces cerevisiae. Molecular Cell Biology, 11, 322–328.
Treco, D., & Arnheim, N. (1986). The evolutionary conserved repetitive sequence d(TG·AC)n promotes reciprocal exchange and generates unusual recombinant tetrads during yeast meiosis. Molecular and Cellular Biology, 6, 3934–3947.
Gendrel, C. G., Boulet, A., & Dutreix, M. (2000). (CA/GT)(n) microsatellites affect homologous recombination during yeast meiosis. Genes and Development, 14, 1261–1268.
Kirkpatrick, D. T., Wang, Y. H., Dominska, M., Griffith, J. D., & Petes, T. D. (1999). Control of meiotic recombination and gene expression in yeast by a simple repetitive DNA sequence that excludes nucleosomes. Molecular Cell Biology, 19, 7661–7671.
Wahls, W. P., Wallace, L. J., & Moore, P. D. (1990). The Z-DNA motif d(TG)30 promotes reception of information during gene conversion events while stimulating homologous recombination in human cells in culture. Molecular Cell Biology, 10, 785–793.
Napierala, M., Parniewski, P., Pluciennik, A., & Wells, R. D. (2002). Long CTG•CAG repeat sequences markedly stimulate intramolecular recombination. Journal of Biological Chemistry, 277, 34087–34100.
Stephan, W., & Cho, S. (1994). Possible role of natural selection in the formation of tandem-repetitive noncoding DNA. Genetics, 136, 333–341.
Bachtrog, D., Weiss, S., Zangerl, B., Brem, G., & Schlotterer, C. (1999). Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome. Molecular Biology and Evolution, 16, 602–610.
Majewski, J., & Ott, J. (2000). GT repeats are associated with recombination on human chromosome 22. Genome Research, 10, 1108–1114.
Heyer, E., Puymirat, J., Dielties, P., Bakker, E., & de Knijff, P. (1997). Estimating Y chromosome specific microsatellite mutation frequencies using deep rooted pedigrees. Human Molecular Genetics, 6, 799–803.
Kayser, M., et al. (2000). Characteristics and frequency of germline mutations at microsatellite loci from the human Y chromosome, as revealed by direct observation in father/son pairs. The American Journal of Human Genetics, 66, 1580–1588.
Arnheim, N., Calabrese, P., & Nordborg, M. (2003). Hot and cold spots of recombination in the human genome: The reason we should find them and how this can be achieved. The American Journal of Human Genetics, 73, 5–16.
Jeffreys, A. J., Holloway, J. K., Kauppi, L., May, C. A., Neumann, R., Slingsby, M. T., et al. (2004). Meiotic recombination hot spots and human DNA diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 359, 141–152.
Gerton, J. L., De Risi, J., Shroff, R., Lichten, M., Brown, P. O., & Petes, T. D. (2000). Global mapping of meiotic recombination hotspots and coldspots in the yeast Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 97, 11383–11390.
Jeffreys, A. J., Kauppi, L., & Neumann, R. (2001). Intensely punctuate meiotic recombination in the class II region of the major histocompatibility complex. Nature Genetics, 29, 217–272.
Bailey, A. D., Pavelitz, T., & Weiner, A. M. (1998). The microsatellite (CT)n X (GA)n promotes stable chromosomal integration of large tandem arrays of functional human U2 small nuclear RNA genes. Molecular Cell Biology, 18, 2226–2271.
Rosenberg, S. M., Longerich, S., Gee, P., & Harris, R. S. (1994). Adaptive mutation by deletions in small mononucleotide repeats. Science, 265, 405–407.
Jeffreys, A. J., Neuman, R., Panayi, M., Myers, S., & Donnelly, P. (2005). Human recombination hotspots hidden in regions of strong marker association. Nature Genetics, 37, 601–606.
Hashem, V. I., Rosche, W. A., & Sinden, R. R. (2004). Genetic recombination destabilizes (CTG)n·(CAG)n repeats in E. coli. Mutation Research, 554, 95–109.
Li, Y. C., Fahima, T., & Korol, A. B. (2000). Microsatellite diversity correlated with ecological-edaphic and genetic factors in three microsites of wild emmer wheat in North Israel. Molecular Biology and Evolution, 17, 851–862.
Dieringer, D., & Schlotterer, C. (2003). Microsatellite Analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Molecular Ecology Notes, 3, 167–169.
Nishizawa, N., & Nishizawa, K. (2002). A DNA sequence evolution analysis generalized by simulation and the Markov Chain Monte Carlo method implicates strand slippage in a majority of insertions and deletions. Journal of Molecular Evolution, 55, 706–717.
Wilder, J., & Hollocher, H. (2001). Mobile elements and the genesis of microsatellites in dipterans. Molecular Biology and Evolution, 18, 384–392.
Arcot, S. S., Wang, Z., Weber, J. L., Deininger, L., & Batzer, M. A. (1995). Alu repeats: A source for the genesis of primate microsatellites. Genomics, 29, 136–144.
Alexander, L., Rohrer, G., & Beattie, C. (1995). Porcine SINE-associated microsatellite markers: Evidence for new artiodactyl SINEs. Mammalian Genome, 6, 464–468.
Gallagher, P. C., Lear, T. L., Coogle, L. D., & Bailey, E. (1999). Two SINE families associated with equine microsatellite loci. Mammalian Genome, 10, 140–144.
Nadir, E., Margalit, H., Gallily, T., & Ben-Sasson, S. A. (1996). Microsatellites spreading in the human genome: Evolutionary mechanisms and structural implications. Proceedings of the National Academy of Sciences of the United States of America, 93, 6470–6475.
Lin, X., et al. (1999). Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature, 402, 761–768.
Ramsay, L., Macaulay, M., Cardle, L., Morgante, M., Ivanissevich, S. D., Maestri, E., et al. (1999). Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant Journal, 17, 415–425.
Metzgar, D., Liu, L., Hansen, C., Dybrig, K., & Wills, C. (2002). Domain-level differences in microsatellite distribution and content result from different relative rates of insertion and deletion mutations. Genetics Research, 12, 408–413.
Zhang, L., Yuan, D., Yu, S., Li, Z., & Cao, Y. (2004). Preference of simple sequence repeats in coding and non-coding regions of Arabidopsis thaliana. Bioinformatics, 20, 1081–1086.
Robert, V. J., Sijen, T., van Wolfswinkel, J., & Plasterk, R. H. (2005). Chromatin and RNAi factors protect the C. elegans germline against repetitive sequences. Genes and Development, 19, 782–787.
Bogerd, H. P., Wiegand, H. L., Hulme, A. E., Garcia-Perez, J. L., & O’Shea, K. S. (2006). Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proceedings of the National Academy of Sciences of the United States of America, 103, 8780–8785.
Taylor, J. S., Durkin, J. M., & Breden, F. (1999). The death of a microsatellite: A phylogenetic perspective on microsatellite interruptions. Molecular Biology and Evolution, 16, 567–572.
Amos, W. (1999). A relative approach to study the evolution of microsatellites. In D. B. Goldstein & C. Schlotterer (Eds.), Microsatellites: Evolution and applications (pp. 60–79). Oxford: Oxford University Press.
Chambers, G. K., & MacAvoy, E. S. (2000). Microsatellites: Consensus and controversy. Comparitive Biochemistry and Physiology. Part B. Biochemistry & Molecular Biology, 126, 455–476.
Ewen, K. R., Bahlo, M., Treloar, S. A., Levinson, D. F., Mowry, B., Barlow, J. W., et al. (2000). Identification and analysis of error types in high-throughput genotyping. The American Journal of Human Genetics, 67, 727–736.
Ohta, T., & Kimura, M. (1973). A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genetics Research, 22, 201–204.
Shriver, M. D., Jin, L., Chakraborty, R., & Boerwinkle, E. (1993). VNTR allele frequency distributions under the stepwise mutation model: A computer simulation approach. Genetics, 134, 983–993.
Moran, P. A. P. (1975). Wandering distributions and the electrophoretic profile. Theoretical Population Biology, 8, 318–330.
Kimmel, M., & Chakraborty, R. (1996). Measures of variation at DNA repeat loci under a general stepwise mutation model. Theoretical Population Biology, 50, 345–367.
Pritchard, J. K., & Feldman, M. W. (1996). Statistics for microsatellite variation based on coalescence. Theoretical Population Biology, 50, 325–344.
Zhivotovsky, L. A., & Feldman, M. W. (1995). Microsatellite variability and genetic distances. Proceedings of the National Academy of Sciences of the United States of America, 92, 11549–11552.
Goldstein, D., Linares, A. R., Cavalli-Sforza, L. L., & Feldman, M. W. (1995). Genetic absolute dating based on microsatellites and the origin of modern humans. Proceedings of the National Academy of Sciences of the United States of America, 92, 6723–6727.
Thuillet, A. C., Bataillon, T., Sourdille, P., & David, J. L. (2004). Factors affecting polymorphism at microsatellite loci in bread wheat [Triticum aestivum (L.) Thell]: Effects of mutation processes and physical distance from the centromere. Theoretical and Applied Genetics, 108, 368–377.
Slatkin, M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics, 139, 457–462.
Goldstein, D. B., & Pollock, D. D. (1997). Launching microsatellites: A review of mutation processes and methods of phylogenetic inference. Journal of Heredity, 88, 335–342.
Pritchard, J. K., Seielstad, M. T., Perez-Lezaun, A., & Feldman, M. W. (1999). Population growth of human Y chromosome microsatellites. Molecular Biology and Evolution, 16, 1791–1798.
Estoup, A., & Cornuet, J. M. (1999). Microsatellite evolution: Inferences from population data. In D. B. Goldstein & C. Schlotterer (Eds.), Microsatellites: Evolution and applications (pp. 49–65). Oxford: Oxford University Press.
Leblois, R., Estoup, A., & Rousset, F. (2003). Influence of mutational and sampling factors on the estimation of demographic parameters in a “continuous” population under isolation by distance. Molecular Biology and Evolution, 20, 491–502.
Fu, Y., & Chakraborty, R. (1998). Simultaneous estimation of all the parameters of a step-wise mutation model. Genetics, 150, 487–497.
Kimura, M., & Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics, 49, 725–738.
Symonds, V. V., & Lloyd, A. M. (2003). An analysis of microsatellite loci in Arabidopsis thaliana: Mutational dynamics and application. Genetics, 165, 1475–1488.
Goldstein, D., Linares, A. R., Cavalli-Sforza, L. L., & Feldman, M. W. (1995). An evaluation of genetic distances for use with microsatellite loci. Genetics, 139, 463–471.
Brohede, J., Primmer, C. R., Moller, A., & Ellegren, H. (2002). Heterogeneity in the rate and pattern of germline mutation at individual microsatellite loci. Nucleic Acids Research, 30, 1997–2003.
Thuillet, A. C., Bru, D., David, J., Roumet, P., & Santoni, S. (2002). Direct estimation of mutation rate for 10 microsatellite loci in durum wheat. Triticum turgidum (L.) Thell. ssp durum desf. Molecular Biology and Evolution, 19, 122–125.
Harr, B., & Schlotterer, C. (2000). Long microsatellite alleles in Drosophila melanogaster have a downward mutation bias and short persistence times, which cause their genome-wide under-representation. Genetics, 155, 1213–1220.
Garza, J. C., Slatkin, M., & Freimer, N. B. (1995). Microsatellite allele frequencies in humans and chimpanzees, with implications for constraints on allele size. Molecular Biology and Evolution, 12, 594–603.
Zhivotovsky, L. A., Feldman, M. W., & Grishechkin, S. A. (1997). Biased mutations and microsatellite variation. Molecular Biology and Evolution, 14, 926–933.
Crow, J., & Kimura, M. (1970). An introduction to population genetics theory. Minneapolis: Burgess Publishing Company.
Cooper, G., Burroughs, N. J., Rand, D. A., Rubinsztein, D. C., & Amos, W. (1999). Markov chain Monte Carlo analysis of human Y-chromosome microsatellite provides evidence of biased mutation. Proceedings of the National Academy of Sciences of the United States of America, 96, 11916–11921.
Renwick, A., Davison, L., Spratt, H., King, J. P., & Kimmel, M. (2001). DNA dinucleotide evolution in humans: Fitting theory to facts. Genetics, 159, 737–747.
Xu, H., & Fu, Y. X. (2004). Estimating effective population size or mutation rate with microsatellites. Genetics, 166, 555–563.
Grimaldi, M. C., & Crouau-Roy, B. (1997). Microsatellite allelic homoplasy due to variable flanking sequences. Journal of Molecular Evolution, 44, 336–340.
Van Oppen, J. H., Rico, C., Turner, G. F., & Hewitt, G. M. (2000). Extensive homoplasy, non-step mutations and ancestral polymorphism at a complex microsatellite locus in lake Malawi Ciclids. Molecular Biology and Evolution, 17, 489–498.
Primmer, C. R., & Ellegren, H. (1998). Patterns of molecular evolution in avian microsatellites. Molecular Biology and Evolution, 15, 997–1008.
Colson, I., & Goldstein, D. B. (1999). Evidence for complex mutations at microsatellite loci in Drosophila. Genetics, 152, 617–627.
Estoup, A., Jarne, P., & Cornuet, J. M. (2002). Homoplasy and mutation model at microsatellite loci and their consequences for population genetic analysis. Molecular Ecology, 11, 1591–1604.
Nauta, M. J., & Weissing, F. J. (1996). Constraints on allele size at microsatellite loci—Implications for genetic differentiation. Genetics, 143, 1021–1032.
Viard, F., Franck, P., Dubois, M. P., Estoup, A., & Jarne, P. (1998). Variation of microsatellite size homoplasy across electromorphs, loci and populations in three vertebrate species. Journal of Molecular Evolution, 47, 42–51.
Taylor, J. S., Sanny, J. S. P., & Breden, F. (1999). Microsatellite allele size homoplasy in the guppy (Poecilia reticulata). Journal of Molecular Evolution, 48, 245–247.
Hartl, D. I. (2000). Molecular melodies in high and low C. Nature Reviews Genetics, 1, 145–149.
Ohri, D., Bhargava, A., & Chatterjee, A. (2004). Nuclear DNA amounts in 112 species of tropical hardwoods—New estimates. Plant Biology, 6, 555–561.
Bhargava, A., Shukla, S., & Ohri, D. (2007). Genome size variation in some cultivated and wild species of Chenopodium (Chenopodiaceae). Caryologia, 60, 245–250.
Hancock, J. M. (1996). Simple sequences and the expanding genome. BioEssays, 18, 421–425.
Garner, T. W. (2002). Genome size and microsatellites: The effect of nuclear size on amplification potential. Genome, 45, 212–215.
Ustinova, J., Achmann, R., Cremer, S., & Mayer, F. (2006). Long repeats in a huge genome: Microsatellite loci in the grasshopper Chorthippus biguttulus. Journal of Molecular Evolution, 62, 158–167.
Tero, N., Neumeier, H., Gudavalli, R., & Schlotterer, C. (2006). Silene tatarica microsatellites are frequently located in repetitive DNA. Journal of Evolutionary Biology, 19, 1612–1619.
Mrazek, J., Guo, X., & Shah, A. (2007). Simple sequence repeats in prokaryotic genomes. Proceedings of the National Academy of Sciences of the United States of America, 104, 8472–8477.
Karaoglu, H., Lee, C. M. Y., & Meyer, W. (2005). Survey of simple sequence repeats in completed fungal genomes. Molecular Biology and Evolution, 22, 639–649.
Levinson, G., & Gutman, G. A. (1987). Slipped strand mispairing: A major mechanism for DNA sequence evolution. Molecular Biology and Evolution, 4, 203–221.
Vasquez, F., Perez, T., Albornoz, J., & Dominguez, A. (2000). Estimation of the mutation rates in Drosophila melanogaster. Genetics Research, 76, 323–326.
Serikawa, T., Kuramoto, T., Hilbert, P., Mori, M., & Yamada, J. (1992). Rat gene mapping using PCR-analyzed microsatellites. Genetics, 131, 701–721.
Dietrich, W. F., Miller, J. C., Steen, R. G., Merchant, M., & Damron, D. (1994). A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genetics, 7, 220–245.
Sajantilla, A., Lukka, M., & Syvanen, A. C. (1999). Experimentally observed germline mutations at human micro- and mini-satellite loci. European Journal of Human Genetics, 7, 263–266.
Udupa, S. M., & Baum, M. (2001). High mutation rate and mutational bias at (TAA)n microsatellite loci in chickpea (Cicer arietinum L.). Molecular Genetics and Genomics, 265, 1097–1103.
McConnell, R., Middlemist, S., Scala, C., Strassman, J. E., & Queller, D. C. (2007). An unusually low microsatellite mutation rate in Dictyostelium discoideum, an organism with unusually abundant microsatellites. Genetics, 177, 1499–1507.
Raquin, A. L., Depaulis, F., Lambert, A., Galic, N., Brabant, P., & Goldringer, I. (2008). Experimental estimation of mutation rates in a wheat population with a gene genealogy approach. Genetics, 179, 2195–2211.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bhargava, A., Fuentes, F.F. Mutational Dynamics of Microsatellites. Mol Biotechnol 44, 250–266 (2010). https://doi.org/10.1007/s12033-009-9230-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12033-009-9230-4