Skip to main content

Advertisement

Log in

Improved PCR-BSP Assay for Multiplex Methylation Pattern Analysis in Minimal Amount of DNA

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cell-specific DNA methylation pattern detection is of great importance for the tumorigenesis and differentiation studies. Comparatively, large amounts of DNA were needed for traditional methods of DNA methylation pattern detection, and therefore, more sensitive method for high throughput analysis with a limited amount of DNA is needed. With Mouse 3T3 cells, we developed new multiplex-nested PCR technologies for bisulfite-assisted genomic sequencing PCR (BSP) methylation pattern detection method. Primers step add-in method and templates precipitation methods efficiently increase the throughput of the assay, and the nested PCR method also increased the sensitivity. The optimized assay could successfully detect 15 sequences of methylation pattern with a minimal amount of DNA (500–1,000 cells of genome DNA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Latham, K. E. (1999). Mechanisms and control of embryonic genome activation in mammalian embryo. International Review of Cytology, 193, 71–124. doi:10.1016/S0074-7696(08)61779-9.

    Article  CAS  Google Scholar 

  2. Wajed, S. A., Laird, P. W., & DeMeester, T. R. (2001). DNA methylation: An alternative pathway to cancer. Annals of Surgery, 234, 10–20. doi:10.1097/00000658-200107000-00003.

    Article  CAS  Google Scholar 

  3. Jones, P. A., & Baylin, S. B. (2002). The fundamental role of epigenetic events in cancer. Nature Reviews Genetics, 3, 415–428. doi:10.1038/nrg962.

    Article  CAS  Google Scholar 

  4. Pennisi, E. (2001). Behind the scenes of gene expression. Science, 293, 1064–1067. doi:10.1126/science.293.5532.1064.

    Article  CAS  Google Scholar 

  5. Lyko, F. (2005). Novel methods for analysis of genomic DNA methylation. Analytical and Bioanalytical Chemistry, 381, 67–68. doi:10.1007/s00216-004-2903-8.

    Article  CAS  Google Scholar 

  6. Olek, A., Oswald, J., & Walter, J. (1996). A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Research, 24, 5064–5066. doi:10.1093/nar/24.24.5064.

    Article  CAS  Google Scholar 

  7. Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg, G. W., et al. (1992). A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proceedings of the National Academy of Sciences of the United States of America, 89, 1827–1831. doi:10.1073/pnas.89.5.1827.

    Article  CAS  Google Scholar 

  8. Ushijima, T. (2005). Detection and interpretation of altered methylation patterns in cancer cells. Nature Reviews Cancer, 5, 223–231. doi:10.1038/nrc1571.

    Article  CAS  Google Scholar 

  9. Mill, J., Yazdanpanah, S., Guckel, E., Zieqler, S., Kaminsky, Z., & Petronis, A. (2006). Whole genome amplification of sodium bisulfite-treated DNA allows the accurate estimate of methylated cytosine density in limited DNA resources. BioTechniques, 41, 603–607. doi:10.2144/000112266.

    Article  CAS  Google Scholar 

  10. Ruano, G., Fenton, W., & Kidd, K. K. (1989). Biphasic amplification of very dilute DNAsamples via ‘booster’ PCR. Nucleic Acids Research, 17, 5407–5409. doi:10.1093/nar/17.13.5407.

    Article  CAS  Google Scholar 

  11. Hayatsu, H., Wataya, Y., Kai, K., & Iida, S. (1970). Reaction of sodium bisulphite with uracil, cytosine, and their derivatives. Biochemistry, 9, 2858–2864. doi:10.1021/bi00816a016.

    Article  CAS  Google Scholar 

  12. Keshet, I., Yisraeli, J., & Cedar, H. (1985). Effect of regional DNA methylation on gene expression. Proceedings of the National Academy of Sciences of the United States of America, 82, 2560–2564. doi:10.1073/pnas.82.9.2560.

    Article  CAS  Google Scholar 

  13. Stein, R., Sciaky-Gallili, N., Razin, A., & Cedar, H. (1983). Pattern of methylation of two genes coding for housekeeping functions. Proceedings of the National Academy of Sciences of the United States of America, 80, 2422–2426. doi:10.1073/pnas.80.9.2422.

    Article  CAS  Google Scholar 

  14. Henegariu, O., Heerema, N. A., Dlouhy, S. R., Vance, G. H., & Vogt, P. H. (1997). Multiplex PCR: Critical parameters and step-by-step protocol. BioTechniques, 23, 504–511. 32 33.

    CAS  Google Scholar 

  15. Raizis, A. M., Schmitt, F., & Jost, J. P. (1995). A bisulfite method of 5-methylcytosine mapping that minimizes template degradation. Analytical Biochemistry, 226, 161–166. doi:10.1006/abio.1995.1204.

    Article  CAS  Google Scholar 

  16. Kazushige, K., Takashi, T., & Hikoya, H. (1974). The effect of bisulfite modification on the template activity of DNA for DNA polymerase I. Nucleic Acids Research, 1, 889–899. doi:10.1093/nar/1.7.889.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (no. 30771191), and the Key Project of Science & Technology Commission of Shanghai Municipality (no. 071409004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxun Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Yu, M., Li, K. et al. Improved PCR-BSP Assay for Multiplex Methylation Pattern Analysis in Minimal Amount of DNA. Mol Biotechnol 42, 333–340 (2009). https://doi.org/10.1007/s12033-009-9169-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9169-5

Keywords

Navigation