Skip to main content
Log in

One Novel Mitochondrial Citrate Synthase from Oryza sativa L. can Enhance Aluminum Tolerance in Transgenic Tobacco

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Rice exhibits the greatest aluminum (Al) tolerance compared with other cereals such as wheat, barley, maize, etc. A full-length gene, OsCS1, encoding citrate synthase, which is highly induced by aluminum toxicity in rice (Oryza sativa L.), was isolated. Sequence analysis and the sub-cellular localization of OsCS1 in yeast revealed that it is a mitochondrial citrate synthase. OsCS1 was induced by Al toxicity. Several independent transgenic tobacco lines expressing OsCS 1 exhibitted increased citrate efflux and extraordinary Al tolerance. Possible outlook for OsCS1 to be applied to enhance plant tolerance to Al toxicity was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. van Breemen, N., Mulder, J., & van Grinsven, J. J. M. (1987). Impacts of acid Atmospheric deposition on woodland soils in the Netherlands: II. Nitrogen transformations. Soil Science Society of America, 51, 634–1640.

    Google Scholar 

  2. Von Uexkull, H. R., & Mutert, E. (1995). Global extent development and economic of acid soils. Plant and Soil, 171, 1–15. doi:10.1007/BF00009558.

    Article  Google Scholar 

  3. Ma, J. F., Nagao, S., Huang, C. F., & Nishimura, M. (2005). Isolation and characterization of a rice mutant hypersensitive to Al. Plant and Cell Physiology, 46, 1054–1061. doi:10.1093/pcp/pci116.

    Article  CAS  Google Scholar 

  4. Zheng, S. J., Ma, J. F., & Matsumoto, H. (1998). High aluminum resistance in buckwheat. I. Al-induced specific secretion of oxalic acid from root tips. Plant Physiology, 117, 745–751. doi:10.1104/pp.117.3.745.

    Article  Google Scholar 

  5. Yang, J. L., Zheng, S. J., He, Y. F., & Matsumoto, H. (2005). Aluminium resistance requires resistance to acid stress: A case study with spinach that exudes oxalate rapidly when exposed to Al stress. Journal of Experimental Botany, 414, 1197–1203. doi:10.1093/jxb/eri113.

    Article  Google Scholar 

  6. Yang, J. L., Zheng, S. J., He Y. F., You, J. F., Zhang, L., & Yu, X. H. (2006) Comparative studies on the effect of a protein-synthesis inhibitor on aluminium-induced secretion of organic acids from Fagopyrum esculentum Moench and Cassia tora L. roots. Plant, Cell & Environment, 29, 240–246. doi:10.1111/j.1365-3040.2005.01416.x.

  7. Paul, B. L., Degenhardt, J., Tai, C. Y., Laura, M. S., Stephen, H. H., & Leon, V. K. (1998). Aluminum-resistant Arabidopsis mutants that exhibit altered patterns of aluminum accumulation and organic acid release from roots. Plant Physiology, 117, 9–18. doi:10.1104/pp.117.1.9.

    Article  Google Scholar 

  8. Koyama, H., Kawamura, A., Kihara, T., Hara, T., Takita, E., & Shibata, D. (2000). Overexpression of mitochondrial citrate synthase in Arabidopsis thaliana improved growth on a phosphorus-limited soil. Plant and Cell Physiology, 41, 1030–1037. doi:10.1093/pcp/pcd029.

    Article  CAS  Google Scholar 

  9. Anoop, V. M., Basu, U., McCammon, M. T., McAlister-Henn, L., & Taylor, G. J. (2003). Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant Physiology, 132, 2205–2217. doi:10.1104/pp.103.023903.

    Article  CAS  Google Scholar 

  10. de la Fuente, J. M., Ramyrez-Rodryguez, V., Cabrera-Ponce, J. L., & Herrera-Estrella, L. (1997). Aluminum tolerance in transgenic plants by alteration of citrate synthesis. Science, 276, 1566–1568. doi:10.1126/science.276.5318.1566.

    Article  Google Scholar 

  11. Tesfaye, M., Temple, S. J., Allan, D. L., Vance, C. P., & Samac, D. A. (2001). Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiology, 127, 1836–1844. doi:10.1104/pp.010376.

    Article  CAS  Google Scholar 

  12. Li, X. F., Ma, J. F., & Matsumoto, H. (2000). Pattern of aluminum-induced secretion of organic acids differs between Rye and Wheat. Plant Physiology, 123, 1537–1543. doi:10.1104/pp.123.4.1537.

    Article  CAS  Google Scholar 

  13. Unger, E. A., Hand, J. M., Cashmore, A. R., & Vasconcelos, A. C. (1989). Isolation of a cDNA encoding mitochondrial citrate synthase from Arabidopsis thaliana. Plant Molecular Biology, 13, 411–418. doi:10.1007/BF00015553.

    Article  CAS  Google Scholar 

  14. Koyama, H., Takita, E., Kawamura, A., Hara, T., & Shibata, D. (1999). Overexpression of mitochondrial citrate synthase gene improves the growth of carrot cells in aluminum-phosphate medium. Plant and Cell Physiology, 40, 482–488.

    CAS  Google Scholar 

  15. Yoshida, S., Forno, D. A., Cook, J. H., & Gomez, K. A. (1976). Laboratory manual for physiological studies of rice. Manila, Philippines: International Rice Research Institute.

    Google Scholar 

  16. Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISSMODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31, 3381–3385. doi:10.1093/nar/gkg520.

    Article  CAS  Google Scholar 

  17. Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss- PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18, 2714–2723. doi:10.1002/elps.1150181505.

    Article  CAS  Google Scholar 

  18. Zhang, S. S., Ming, F., Lu, Qun., Guo, B., & Shen, D. L. (2005). Molecular cloning and characterization of citrate synthase gene in rice (Oryza sativa L.). La Ricerca Scientifica, 12, 233–237.

    Google Scholar 

  19. Hartl, F. U., Pfanner, N., Nicholson, D. W., & Neupert, W. (1989). Mitochondrial protein import. Biochimica et Biophysica Acta, 988, 1–45.

    CAS  Google Scholar 

  20. Pfanner, N., & Neupert, W. (1990). The mitochondrial protein import apparatus. Annual Review of Biochemistry, 59, 331–353. doi:10.1146/annurev.bi.59.070190.001555.

    Article  CAS  Google Scholar 

  21. Attardi, G., & Schatz, G. (1988). Biogenesis of mitochondria. Annual Review of Cell Biology, 4, 289–333. doi:10.1146/annurev.cb.04.110188.001445.

    Article  CAS  Google Scholar 

  22. Arnott, M. A., Michael, R. A., Thompson, C. R., Hough, D. W., & Danson, M. J. (2000). Thermostability and thermoactivity of citrate synthases from the thermophilic and hyperthermophilic archaea, Thermoplasma acidophilum and Pyrococcus furiosus. Journal of Molecular Biology, 304, 657–668. doi:10.1006/jmbi.2000.4240.

    Article  CAS  Google Scholar 

  23. Lopez-Bucio, J., de La Vega, O. M., Guevara-Garcia, A., & Herrera-Estrella, L. (2000). Enhanced phosphorus uptake in transgenic tobacco plants that overproduce citrate. Nature Biotechnology, 18, 450–453. doi:10.1038/74531.

    Article  CAS  Google Scholar 

  24. Landschutze, V., Muller-Rober, B., & Willmitzer, L. (1995). Mitochondrial citratesynthase from potato: Predominant expression in mature leaves and young flower buds. Planta, 196, 756–764. doi:10.1007/BF01106771.

    Article  CAS  Google Scholar 

  25. Ma, J. F., Shen, R., Zhao, Z., Wissuwa, M., Takeuchi, Y., Ebitani, T., et al. (2002). Response of rice to Al stress and identification of quantitative trait Loci for Al tolerance. Plant and Cell Physiology, 43, 652–659. doi:10.1093/pcp/pcf081.

    Article  CAS  Google Scholar 

  26. Foy, C. D. (1988). Plant adaptation to acid, aluminum-toxic soils. Communications in Soil Science and Plant Analysis, 19, 959–987. doi:10.1080/00103628809367988.

    Article  CAS  Google Scholar 

  27. Delhaize, E., Ryan, P. R., & Randall, P. J. (1993). Aluminum tolerance in wheat (Triticum aestivum L.) (II. Aluminum-stimulated excretion of malic acid from root apices). Plant Physiology, 103, 695–702.

    CAS  Google Scholar 

  28. Pellet, D., Grunes, D., & Kochian, L. (1995). Organic acid exudation as an aluminum-tolerance mechanism in maize (Zea mays L.). Planta, 196, 788–795. doi:10.1007/BF01106775.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The study was supported by the National Science Foundation of China (NSFC), No. 30570988, the Program for New Century Excellent Talents in University, No. NCET- 07- 020, and the Youth Science and Technology Phosphor Foundation of Shanghai (08QH14003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Ming.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Zhang, W., Zhang, B. et al. One Novel Mitochondrial Citrate Synthase from Oryza sativa L. can Enhance Aluminum Tolerance in Transgenic Tobacco. Mol Biotechnol 42, 299–305 (2009). https://doi.org/10.1007/s12033-009-9162-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9162-z

Keywords

Navigation