Skip to main content
Log in

Phylogenetic Analysis and in Silico Characterization of the GARS-AIRS-GART Gene which Codes for a tri-Functional Enzyme Protein Involved in de novo Purine Biosynthesis

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Human GARS-AIRS-GART encodes a fused tri-functional enzyme protein involved in de novo purine biosynthesis, aberrant function being implicated in Down syndrome and Leukemia. We performed phylogenetic analysis to discern evolutionary relationships and in silico characterization to identify elements potentially important for gene regulation. We report that murine, bovine and chimpanzee sequences are the nearest neighbors of human GARS-AIRS-GART and that endo-duplication of the AIRS protein is restricted to insect orthologs. Convergent evolution of mono-functional bacterial orthologs to bi-functional, partly fused, yeast orthologs is observed from the rooted-NJ tree topology that bears bootstrap values exceeding 9000 in majority of the nodes. Sequence alignments reveal that introns 11–15 of human GARS-AIRS-GART are conserved among vertebrates. An inverse correlation is observed between intron size and intron density without bias for intron position. The generation time of organisms is independent of intron density. Human, bovine and murine sequences possess similar GC content with CpG islands in promoter regions. The long isoforms of cow and chicken transcripts and short isoforms of human, bovine and murine mRNA form energetically stable stem-like structures in the 3′-UTR and may regulate translational stability of GARS-AIRS-GART transcripts. Glycine-rich loops important for enzyme structure and ATP-, folate-binding residues are partially conserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Patterson, D., Graw, S., & Jones, C. (1981). Demonstration by somatic cell genetics, of coordinate regulation of genes for two enzymes of purine synthesis assigned to human chromosome 21. Proceedings of the National Academy of Sciences of the United States of America, 78, 405–409. doi:10.1073/pnas.78.1.405.

    Article  CAS  Google Scholar 

  2. Hard, R. G., Benkovic, S. J., Van Keuren, M. L., Graw, S. L., Drabkin, H. A., & Patterson, D. (1986). Assignment of a third purine biosynthetic gene (glycinamide ribonucleotide transformylase) to human chromosome 21. American Journal of Human Genetics, 39, 179–185.

    Google Scholar 

  3. Hattori, M., Fujiyama, A., Taylor, T. D., Watanabe, H., Yada, T., Park, H. S., et al. (2000). The DNA sequence of human chromosome 21. Nature, 405, 311–319. doi:10.1038/35012518.

    Article  CAS  Google Scholar 

  4. Kappock, T. J., Ealick, S. E., & Stubbe, J. A. (2000). Modular evolution of the purine biosynthetic pathway. Current Opinion in Chemical Biology, 4, 567–572. doi:10.1016/S1367-5931(00)00133-2.

    Article  CAS  Google Scholar 

  5. Epstein, C. J. (2001). Down syndrome (Trisomy21). In C. R. Scriver, A. L. Beaudet, D. Valle, W. S. Sly, B. Childs, K. W. Kinzler, B. Vogelstein (Eds.), Metabolic and molecular bases of inherited diseases (Vol. 1, pp. 1223–1256). New York: McGraw Hill Medical Publishing Division.

  6. Zaza, G., yang, W., Kager, L., Cheok, M., Downing, J., Pui, C.-H., et al. (2004). Acute lymphoblastic leukemia with TEL-AML1 fusion has lower expression of genes involved in purine metabolism and lower de novo purine synthesis. Blood, 104, 1435–1441. doi:10.1182/blood-2003-12-4306.

    Article  CAS  Google Scholar 

  7. Smith, J. M., Daum, H. A., & II, I. (1986). Nucleotide sequence of the purM gene encoding 5′-Phosphoribosyl-5-aminoimidazole synthetase of Escherichia coli K12. The Journal of Biological Chemistry, 261, 10632–10636.

    CAS  Google Scholar 

  8. Smith, J. M., Daum, H. A., & II, I. (1987). Identification and nucleotide sequence of a gene encoding 5′-phosphoribosylglycinamide transformylase in Escherichia coli K12. The Journal of Biological Chemistry, 262, 10565–10569.

    CAS  Google Scholar 

  9. Aiba, A., & Mizobuchi, K. (1989). Nucleotide sequence analysis of genes purH and purD involved in the de novo purine nucleotide biosynthesis of Escherichia coli. The Journal of Biological Chemistry, 264, 21239–21246.

    CAS  Google Scholar 

  10. Schild, D., Brake, A. J., Kiefer, M. C., Young, D., & Barr, J. (1990). Cloning of three human multifunctional de novo purine biosynthetic genes by functional complementation of yeast mutations. Proceedings of the National Academy of Sciences of the United States of America, 87, 2916–2920. doi:10.1073/pnas.87.8.2916.

    Article  CAS  Google Scholar 

  11. Henikoff, S., Keene, M. A., Sloan, J. S., Bleskan, J., Hards, R., & Patterson, D. (1986). Multiple purine pathway enzyme activities are encoded at a single genetic locus in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 83, 720–724. doi:10.1073/pnas.83.3.720.

    Article  CAS  Google Scholar 

  12. Aimi, J., Qiu, H., Williams, J., Zalkin, H., & Dixon, J. E. (1990). De novo purine nucleotide biosynthesis: Cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucloetide transformylase by functional complementation in E. coli. Nucleic Acids Research, 18, 6665–6672. doi:10.1093/nar/18.22.6665.

    Article  CAS  Google Scholar 

  13. Kan, J. L. C., & Moran, R. G. (1995). Analysis of a mouse gene encoding three steps of purine synthesis reveals use of an intronic polyadenylation signal without alternative exon usage. The Journal of Biological Chemistry, 270, 1823–1832. doi:10.1074/jbc.270.4.1823.

    Article  CAS  Google Scholar 

  14. Wohlke, A., Drogemuller, C., Kuiper, H., Leeb, T., & Distl, O. (2005). Molecular characterization and chromosomal assignment of the bovine glycinamide ribonucleotide formyltransferase (GART) gene on cattle chromosome 1q12.1–1q12.2. Gene, 348, 73–81. doi:10.1016/j.gene.2004.12.038.

    Article  Google Scholar 

  15. Zhang, Y., Desharnais, J., Greasley, S. E., Beardsley, G. P., Boger, D. L., & Wilson, I. A. (2002). Crystal structure of human GARTfase at low and high pH and with substrate β-GAR. Biochemistry, 41, 14206–14215. doi:10.1021/bi020522m.

    Article  CAS  Google Scholar 

  16. Dahms, T. E. S., Sainz, G., Giroux, E. L., Caperelli, C. A., & Smith, J. L. (2005). The apo and ternary complex structures of a chemotherapeutic target: Human glycinamide ribonucleotide transformylase. Biochemistry, 44, 9841–9850. doi:10.1021/bi050307g.

    Article  CAS  Google Scholar 

  17. Wang, W., Kappock, T. J., Stubbe, J. A., & Ealick, S. E. (1998). X-ray crystal structure of the glycinamide ribonucleotide synthetase from Escherichia coli. Biochemistry, 37, 15647–15662. doi:10.1021/bi981405n.

    Article  CAS  Google Scholar 

  18. Li, C., Kappock, T. J., Stubbe, J. A., Weaver, T. M., & Ealick, S. E. (1999). X-ray crystal structure of aminoimidazole ribonucleotide synthetase (PurM), from the Escherichia coli purine biosynthetic pathway at 2.5 Ǻ resolution. Structure (London, England), 7, 1155–1166. doi:10.1016/S0969-2126(99)80182-8.

    CAS  Google Scholar 

  19. Bronder, J. L., & Moran, R. G. (2003). A defect in the p53 response pathway induced by de novo purine synthesis inhibition. The Journal of Biological Chemistry, 278, 48861–48871. doi:10.1074/jbc.M304844200.

    Article  CAS  Google Scholar 

  20. Brodsky, G., Barnes, T., Bleskan, J., Becker, L., Cox, M., & Patterson, D. (1997). The human GARS-AIRS-GART gene encodes two proteins which are differentially expressed during human brain development and temporally over-expressed in cerebellum of individuals with Down syndrome. Human Molecular Genetics, 6, 2043–2050. doi:10.1093/hmg/6.12.2043.

    Article  CAS  Google Scholar 

  21. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The CLUSTAL-X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882. doi:10.1093/nar/25.24.4876.

    Article  CAS  Google Scholar 

  22. Hall, B. G. (2004) Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences. Molecular Biology and Evolution, 22, 792–802 [Hall, B. G., Tune-Clustal-X v 1.01 (Macintosh) distributed by the author, Bellingham, WA].

  23. Valdar, W. S. J. (2002). Scoring residue conservation. Proteins: Structure, Function and Genetics, 48, 227–241. doi:10.1002/prot.10146.

    Article  CAS  Google Scholar 

  24. Felsenstein, J. (1989). PHYLIP––phylogeny inference package (Version 3.2). Cladistics, 5, 164–166.

    Google Scholar 

  25. Felsenstein, J. (2005). PHYLIP (Phylogeny Inference Package) version 3.6. Department of Genome Sciences, University of Washington, Seattle, http://www.evolution.genetics.washington.edu/phylip.html [Distributed by the author].

  26. Sultan, S., Manecksha, R., O’ Sullivan, J., Hynes, N., Quill, D., & Courtney, D. (2004). Survival of ruptured abdominal aortic aneurysms in the west of Ireland: Do prognostic indicators of outcome exist? Vascular and Endovascular Surgery, 38, 43–49. doi:10.1177/153857440403800105.

    Article  CAS  Google Scholar 

  27. Scherf, M., Klingenhoff, A., & Werner, T. (2000). Highly specific localization of promoter regions in large genomic sequences by PromoterInspector: A novel context analysis approach. Journal of Molecular Biology, 297, 599–606. doi:10.1006/jmbi.2000.3589.

    Article  CAS  Google Scholar 

  28. Bajic, V. B., & Seah, S. H. (2003). Dragon gene start finder: An advanced system for finding approximate locations of the start of gene transcriptional units. Genome Research, 13, 1923–1929.

    CAS  Google Scholar 

  29. Rice, P., Longden, I., & Bleasby, A. (2000). EMBOSS: The European molecular biology open software suite. Trends in Genetics, 16, 276–277. doi:10.1016/S0168-9525(00)02024-2.

    Article  CAS  Google Scholar 

  30. Brodsky, L. I., Ivanov, V. V., Kalaydzidis, Y. L., Leontovich, A. M., Nikolaev, V. K., Feranchuk, S. I., et al. (1995). GeneBee-NET: Internet-based server for analyzing biopolymers structure. Biochemistry, 60, 923–928.

    Google Scholar 

  31. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). ClustalW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. doi:10.1093/nar/22.22.4673.

    Article  CAS  Google Scholar 

  32. Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406–3415. doi:10.1093/nar/gkg595.

    Article  CAS  Google Scholar 

  33. Henikoff, S., Sloan, J. S., & Kelly, J. D. (1983). A Drosophila metabolic gene transcript is alternatively processed. Cell, 34, 405–414. doi:10.1016/0092-8674(83)90374-4.

    Article  CAS  Google Scholar 

  34. Clark, D. V., & Henikoff, S. (1992). Unusual organizational features of the Drosophila GART locus are not observed within Diptera. Journal of Molecular Evolution, 35, 51–59. doi:10.1007/BF00160260.

    Article  CAS  Google Scholar 

  35. Henikoff, S., & Eghtedarzadeh, M. K. (1987). Conserved arrangements of nested genes at the Drosophila GART locus. Genetics, 117, 711–725.

    CAS  Google Scholar 

  36. Jeffares, D. C., Mourier, T., & Penny, D. (2006). The biology of intron gain and loss. Trends in Genetics, 22, 16–22. doi:10.1016/j.tig.2005.10.006.

    Article  CAS  Google Scholar 

  37. Banerjee, D., & Nandagopal, K. (2007). Potential interaction between the GARS-AIRS-GART gene and CP2/LBP-1c/LSF transcription factor in Down syndrome-related Alzheimer Disease. Cellular and Molecular Neurobiology, 27, 1117–1126. doi:10.1007/s10571-007-9217-2.

    Article  CAS  Google Scholar 

  38. Alexiou, M., & Leese, H. J. (1992). Purine utilization, de novo synthesis and degradation in mouse pre-implantation embryo. Development, 114, 185–192.

    CAS  Google Scholar 

  39. Malmanche, N., & Clark, D. V. (2004). Drosophila melanogaster Prat, a purine de novo synthesis gene, has a pleiotropic maternal effect phenotype. Genetics, 168, 2011–2023. doi:10.1534/genetics.104.033134.

    Article  CAS  Google Scholar 

  40. Kan, J. L. C., & Moran, R. G. (1997). Intronic polyadenylation in the human glycinamide ribonucleotide formyltransferase gene. Nucleic Acids Research, 25, 3118–3123. doi:10.1093/nar/25.15.3118.

    Article  CAS  Google Scholar 

  41. Vinogradov, A. E. (2005). Dualism of gene GC content and CpG pattern in regard to expression in the human genome: Magnitude versus breadth. Trends in Genetics, 21, 639–643. doi:10.1016/j.tig.2005.09.002.

    Article  CAS  Google Scholar 

  42. Suzuki, M. M., Kerr, A. R. W., De Sousa, D., & Bird, A. (2007). CpG methylation is targeted to transcription units in invertebrate genome. Genome Research, 17, 625–631. doi:10.1101/gr.6163007.

    Article  CAS  Google Scholar 

  43. Lyko, F., Ramsahoye, B. H., Kashevsky, H., Tudor, M., Mastrangelo, M.-A., Orr-Weaver, T. L., et al. (1999). Mammalian (cytosine-5) methyl-transferase cause genomic DNA methylation and lethality in Drosophila. Nature Genetics, 23, 363–366. doi:10.1038/15551.

    Article  CAS  Google Scholar 

  44. Roder, K., Hung, M.-S., Lee, T.-L., Lin, T.-Y., Xiao, H., Isobe, K.-I., et al. (2000). Transcriptional repression by Drosophila methyl-CpG-binding proteins. Molecular and Cellular Biology, 20, 7401–7409. doi:10.1128/MCB.20.19.7401-7409.2000.

    Article  CAS  Google Scholar 

  45. Knox, A. J., Graham, C., Bleskan, J., Brodsky, G., & Patterson, D. (2008). Mutations in the Chinese hamster ovary cell GART gene of de novo purine biosynthesis. Gene, 429, 23–30.

    Google Scholar 

Download references

Acknowledgements

Disha Banerjee is the recipient of a Junior Research Fellowship from CSIR grant 27(0131)/04/EMR-II awarded to Krishnadas Nandagopal. The authors thank Mr. Subhrangshu Guhathakurta (Manovikas Kendra Rehabilitation & Research Institute for the Handicapped, Kolkata, India) for technical assistance with the preparation of figures and Dr. T. K. Mukhopadhyay (Department of Zoology, Presidency College, Kolkata, India) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnadas Nandagopal.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, D., Nandagopal, K. Phylogenetic Analysis and in Silico Characterization of the GARS-AIRS-GART Gene which Codes for a tri-Functional Enzyme Protein Involved in de novo Purine Biosynthesis. Mol Biotechnol 42, 306–319 (2009). https://doi.org/10.1007/s12033-009-9160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9160-1

Keywords

Navigation