Skip to main content
Log in

Genetic Diversity of Hevea IRRDB’81 Collection Assessed by RAPD Markers

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The majority of Hevea (Hevea brasiliensis Muell. Arg.) genetic resource in Vietnam derived from the IRRDB’81 germplasm collected in the Amazonian habitats of the genus. Random amplified polymorphic DNA (RAPD) analysis was used to examine the genetic diversity and structure of the IRRDB’81 germplasm. A total of 59 accessions from 13 different districts of the Brazilian states namely Acre, Rondonia, and Mato Grosso were brought into the study using six arbitrarily preselected primers. Sixty-five RAPD band patterns ranging in size from 0.2 to 3.0 kbp were scored for analysis. Differences in the level of DNA polymorphism among the districts and states were revealed. The percentage of the polymorphic DNA fragments calculated for 13 individual districts varied from 15.38 to 70.77%. The mean values of heterozygosity within the district varied from 0.064 to 0.264. Pairwise district Nei’s genetic distance values ranged from 0.046 for Catriquacu and Itanba of Mato Grosso to 0.304 for Tarauaca of Acre and Aracatuba of Mato Grosso. The estimated values of Shannon’s diversity index ranged from 0.093 for the Assis-Brasil district of Acre to 0.389 for the Jiparana district of Rondonia. The analysis of molecular variance (AMOVA) indicated that most of the genetic variations were found among accessions within the districts, while interdistrict variance component accounted for 14.1% only. The low interdistrict differentiation probably implied an extensive gene flow among them. Both the principal coordinate analysis and UPGMA cluster analysis based on genetic distance values revealed a varying degree of separation among the districts and that conformed to geographical origins of Hevea IRRDB’81 collection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Slatkin, M. (1987). Gene flow and the geographic structure of populations. Science, 236, 787–792. doi:10.1126/science.3576198.

    Article  CAS  Google Scholar 

  2. Schaal, B. A., Hayworth, D. A., Olsen, K. M., Rauscher, J. T., & Smith, W. A. (1998). Phylogeographic studies in plants: Problems and prospects. Molecular Ecology, 7, 465–474. doi:10.1046/j.1365-294x.1998.00318.x.

    Article  Google Scholar 

  3. Mitton, J. B. (1994). Molecular approaches to population biology. Annual Review of Ecology and Systematics, 25, 45–69. doi:10.1146/annurev.es.25.110194.000401.

    Article  Google Scholar 

  4. Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 18, 6531–6535. doi:10.1093/nar/18.22.6531.

    Article  CAS  Google Scholar 

  5. Silva, E. P., & Russo, C. A. M. (2000). Techniques and statistical data analysis in molecular population genetics. Hydrobiologia, 420, 119–135. doi:10.1023/A:1003993824352.

    Article  CAS  Google Scholar 

  6. Nybom, H. (2004). Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Molecular Ecology, 13, 1143–1155. doi:10.1111/j.1365-294X.2004.02141.x.

    Article  CAS  Google Scholar 

  7. Volis, S., Yakubov, B., Shulgina, I., Ward, D., Zur, V., & Mendlinger, S. (2001). Tests for adaptive RAPD variation in population genetic structure of wild barley, Hordeum spontaneum Koch. Biological Journal of the Linnean Society. Linnean Society of London, 74, 289–303. doi:10.1006/bijl.2001.0569.

    Article  Google Scholar 

  8. Lynch, M., & Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Molecular Ecology, 3, 91–99. doi:10.1111/j.1365-294X.1994.tb00109.x.

    Article  CAS  Google Scholar 

  9. Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.

    CAS  Google Scholar 

  10. Huff, D. R., Peakall, R., & Smouse, P. E. (1993). RAPD variation within and among natural populations of outcrossing buffalograss [Buchloë dactyloides (Nutt.) Engelm.]. Theoretical and Applied Genetics, 86, 927–934. doi:10.1007/BF00211043.

    Article  CAS  Google Scholar 

  11. Díaz, V., Muniz, L. M., & Ferrer, E. (2001). Random amplified polymorphic DNA and amplified fragment length polymorphism assessment of genetic variation in Nicaraguan populations of Pinus oocarpa. Molecular Ecology, 10, 2593–2603. doi:10.1046/j.0962-1083.2001.01390.x.

    Article  Google Scholar 

  12. Varghese, Y. A., Knaak, C., Sethuraj, M. R., & Ecke, W. (1997). Evaluation of random amplified polymorphic DNA (RAPD) markers in Hevea brasilinesis. Plant Breeding, 116, 47–52. doi:10.1111/j.1439-0523.1997.tb00973.x.

    Article  Google Scholar 

  13. Venkatachalam, P., Thomas, S., Priya, P., Thanseem, I., Saraswathyamma, C. K., Gireesh, T., et al. (2002). Identification of DNA polymorphism among clones of Hevea brasiliensis Muell. Arg. using RAPD analysis. Indian Journal of Natural Rubber Research, 5, 172–181.

    Google Scholar 

  14. Venkatachalam, P., Priya, P., Saraswathyamma, C. K., & Thulaseedharan, A. (2004). Identification, cloning and sequence analysis of a dwarf genome-specific RAPD marker in rubber tree (Hevea brasiliensis Muell. Arg.). Plant Cell Reports, 23, 327–332. doi:10.1007/s00299-004-0833-8.

    Article  CAS  Google Scholar 

  15. Tan, H. (1987). Strategies in rubber tree breeding. In A. J. Abbott & R. K. Atkin (Eds.), Improving vegetatively propagated crops (pp. 27–62). London: Academic Press.

    Google Scholar 

  16. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin, 9, 11–15.

    Google Scholar 

  17. Nei, M. (1972). Genetic distance between populations. American Naturalist, 106, 283–292. doi:10.1086/282771.

    Article  Google Scholar 

  18. Nei, M., & Li, W. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76, 5269–5273. doi:10.1073/pnas.76.10.5269.

    Article  CAS  Google Scholar 

  19. Yeh, F. C., Yang, R. C., & Boyle, T. (1999). Popgene: Microsoft window-based freeware for population genetic analysis, version 1.31. Edmonton: University of Alberta.

    Google Scholar 

  20. Peakall, A., & Smouse, P. E. (2006). GenAlEx: Genetic analysis in excel. Population genetic software for teaching and research, version 6. Molecular Ecology Notes, 6, 288–295. doi:10.1111/j.1471-8286.2005.01155.x.

    Article  Google Scholar 

  21. Pavlicek, A., Hrda, S., & Flegr, J. (1999). FreeTree—Freeware program for construction of phylogenetic trees on the basis of distance data and bootstrap/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Folia Biologica, 45, 97–99.

    CAS  Google Scholar 

  22. Zewei, A., Han, C., Aihua, S., Jialin, F., & Huasun, H. (2005). Identification of rubber clones by RAPD markers. In Proceedings of the International Natural Rubber Conference, 6–8 November, Cochin, India (pp. 88–92).

  23. Venkatachalam, P., Priya, P., Gireesh, T., Saraswathyamma, C. K., & Thulaseedharan, A. (2006). Molecular cloning and sequencing of a polymorphic band from rubber tree (Hevea brasiliensis Muell. Arg.): The nucleotide sequence revealed partial homology with proline-specific permease gene sequence. Current Science, 90, 1510–1515.

    CAS  Google Scholar 

  24. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    Google Scholar 

  25. Shannon, C. E., & Weaver, W. (1949). The mathematical theory of communication. Champaign, IL: University of Illinois Press.

    Google Scholar 

  26. Chevallier, M. H. (1988). Genetic variability of Hevea brasiliensis germplasm using isozyme markers. Journal of Natural Rubber Research, 3, 42–53.

    Google Scholar 

  27. Besse, P., Seguin, M., Lebrun, P., Chevallier, M. H., Nicholas, D., & Lanaud, C. (1994). Genetic diversity among wild and cultivated populations of Hevea brasiliensis assessed by nuclear RFLP analysis. Theoretical and Applied Genetics, 88, 199–207. doi:10.1007/BF00225898.

    Article  CAS  Google Scholar 

  28. Lekawipat, N., Teerawatanasuk, K., Rodier-Goud, M., Seguin, M., Vanavichit, A., Toojinda, T., et al. (2003). Genetic diversity analysis of wild germplasm and cultivated clones of Hevea brasiliensis Muell. Arg. by using microsatellite marker. Journal of Rubber Research, 6, 36–47.

    CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by grant from the Rubber Research Institute of Vietnam. The authors would like to express their gratitude to Mr. Mai Van Son, Director of Rubber Research Institute of Vietnam for his permission to present this paper. Thanks also go to the officers and staffs of Breeding Division of Rubber Research Institute of Vietnam for their contribution to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Thanh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lam, L.V., Thanh, T., Chi, V.T.Q. et al. Genetic Diversity of Hevea IRRDB’81 Collection Assessed by RAPD Markers. Mol Biotechnol 42, 292–298 (2009). https://doi.org/10.1007/s12033-009-9159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9159-7

Keywords

Navigation