Skip to main content
Log in

Protein and Genome Evolution in Mammalian Cells for Biotechnology Applications

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Mutation and selection are the essential steps of evolution. Researchers have long used in vitro mutagenesis, expression, and selection techniques in laboratory bacteria and yeast cultures to evolve proteins with new properties, termed directed evolution. Unfortunately, the nature of mammalian cells makes applying these mutagenesis and whole-organism evolution techniques to mammalian protein expression systems laborious and time consuming. Mammalian evolution systems would be useful to test unique mammalian cell proteins and protein characteristics, such as complex glycosylation. Protein evolution in mammalian cells would allow for generation of novel diagnostic tools and designer polypeptides that can only be tested in a mammalian expression system. Recent advances have shown that mammalian cells of the immune system can be utilized to evolve transgenes during their natural mutagenesis processes, thus creating proteins with unique properties, such as fluorescence. On a more global level, researchers have shown that mutation systems that affect the entire genome of a mammalian cell can give rise to cells with unique phenotypes suitable for commercial processes. This review examines the advances in mammalian cell and protein evolution and the application of this work toward advances in commercial mammalian cell biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang, T. W., Zhu, H., Ma, X. Y., Zhang, T., Ma, Y. S., & Wei, D. Z. (2006). Mutant library construction in directed molecular evolution: casting a wider net. Molecular Biotechnology, 34, 55–68. doi:10.1385/MB:34:1:55.

    Article  Google Scholar 

  2. Lutz, S., & Patrick, W. M. (2004). Novel methods for directed evolution of enzymes: quality, not quantity. Current Opinion in Biotechnology, 15, 291–297. doi:10.1016/j.copbio.2004.05.004.

    Article  CAS  Google Scholar 

  3. Arakawa, H., Kudo, H., Batrak, V., Caldwell, R. B., Rieger, M. A., Ellwart, J. W., et al. (2008). Protein evolution by hypermutation and selection in the B cell line DT40. Nucleic Acids Research, 36, e1. doi:10.1093/nar/gkm616.

    Article  Google Scholar 

  4. Wurm, F. M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nature Biotechnology, 22, 1393–1398. doi:10.1038/nbt1026.

    Article  CAS  Google Scholar 

  5. Matsuura, T., & Yomo, T. (2006). In vitro evolution of proteins. Journal of Bioscience and Bioengineering, 101, 449–456. doi:10.1263/jbb.101.449.

    Article  CAS  Google Scholar 

  6. Orencia, M. C., Yoon, J. S., Ness, J. E., Stemmer, W. P., & Stevens, R. C. (2001). Predicting the emergence of antibiotic resistance by directed evolution and structural analysis. Nature Structural Biology, 8, 238–242. doi:10.1038/84981.

    Article  CAS  Google Scholar 

  7. Stefan, A., Radeghieri, A., Gonzalez Vara y Rodriguez, A., & Hochkoeppler, A. (2001). Directed evolution of beta-galactosidase from Escherichia coli by mutator strains defective in the 3’– > 5’ exonuclease activity of DNA polymerase III. FEBS Letters, 493, 139–143. doi:10.1016/S0014-5793(01)02293-1.

    Article  CAS  Google Scholar 

  8. Aharoni, A., Gaidukov, L., Yagur, S., Toker, L., Silman, I., & Tawfik, D. S. (2004). Directed evolution of mammalian paraoxonases PON1 and PON3 for bacterial expression and catalytic specialization. Proceedings of the National Academy of Sciences of the United States of America, 101, 482–487. doi:10.1073/pnas.2536901100.

    Article  CAS  Google Scholar 

  9. Kumar, S., Chen, C. S., Waxman, D. J., & Halpert, J. R. (2005). Directed evolution of mammalian cytochrome P450 2B1: mutations outside of the active site enhance the metabolism of several substrates, including the anticancer prodrugs cyclophosphamide and ifosfamide. The Journal of Biological Chemistry, 280, 19569–19575. doi:10.1074/jbc.M500158200.

    Article  CAS  Google Scholar 

  10. Kwaks, T. H., & Otte, A. P. (2006). Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends in Biotechnology, 24, 137–142. doi:10.1016/j.tibtech.2006.01.007.

    Article  CAS  Google Scholar 

  11. Wang, C. L., Yang, D. C., & Wabl, M. (2004). Directed molecular evolution by somatic hypermutation. Protein Engineering, Design & Selection, 17, 659–664. doi:10.1093/protein/gzh080.

    Article  CAS  Google Scholar 

  12. Wang, L., Jackson, W. C., Steinbach, P. A., & Tsien, R. Y. (2004). Evolution of new nonantibody proteins via iterative somatic hypermutation. Proceedings of the National Academy of Sciences of the United States of America, 101, 16745–16749. doi:10.1073/pnas.0407752101.

    Article  CAS  Google Scholar 

  13. Yang, N., & Kazazian, H. H., Jr. (2006). L1 retrotransposition is suppressed by endogenously encoded small interfering RNAs in human cultured cells. Nature Structural & Molecular Biology, 13, 763–771. doi:10.1038/nsmb1141.

    Article  CAS  Google Scholar 

  14. Rajewsky, K., Forster, I., & Cumano, A. (1987). Evolutionary and somatic selection of the antibody repertoire in the mouse. Science, 238, 1088–1094. doi:10.1126/science.3317826.

    Article  CAS  Google Scholar 

  15. Li, Z., Woo, C. J., Iglesias-Ussel, M. D., Ronai, D., & Scharff, M. D. (2004). The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes & Development, 18, 1–11. doi:10.1101/gad.1161904.

    Article  Google Scholar 

  16. Peled, J. U., Kuang, F. L., Iglesias-Ussel, M. D., Roa, S., Kalis, S. L., Goodman, M. F., et al. (2008). The Biochemistry of Somatic Hypermutation. Annual Review of Immunology, 26, 481–511. doi:10.1146/annurev.immunol.26.021607.090236.

    Article  CAS  Google Scholar 

  17. Martin, A., & Scharff, M. D. (2002). AID and mismatch repair in antibody diversification. Nature Reviews. Immunology, 2, 605–614. doi:10.1038/nri799.

    CAS  Google Scholar 

  18. Cumbers, S. J., Williams, G. T., Davies, S. L., Grenfell, R. L., Takeda, S., Batista, F. D., et al. (2002). Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines. Nature Biotechnology, 20, 1129–1134. doi:10.1038/nbt752.

    Article  CAS  Google Scholar 

  19. Bachl, J., Carlson, C., Gray-Schopfer, V., Dessing, M., & Olsson, C. (2001). Increased transcription levels induce higher mutation rates in a hypermutating cell line. Journal of Immunology (Baltimore, MD: 1950), 166, 5051–5057.

    CAS  Google Scholar 

  20. Storb, U., Peters, A., Klotz, E., Kim, N., Shen, H. M., Hackett, J., et al. (1998). Cis-acting sequences that affect somatic hypermutation of Ig genes. Immunological Reviews, 162, 153–160. doi:10.1111/j.1600-065X.1998.tb01424.x.

    Article  CAS  Google Scholar 

  21. Wang, L., & Tsien, R. Y. (2006). Evolving proteins in mammalian cells using somatic hypermutation. Nature Protocols, 1, 1346–1350. doi:10.1038/nprot.2006.243.

    Article  CAS  Google Scholar 

  22. Kanayama, N., Todo, K., Takahashi, S., Magari, M., & Ohmori, H. (2006). Genetic manipulation of an exogenous non-immunoglobulin protein by gene conversion machinery in a chicken B cell line. Nucleic Acids Research, 34, e10. doi:10.1093/nar/gnj013.

    Article  Google Scholar 

  23. Yomano, L. P., York, S. W., & Ingram, L. O. (1998). Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. Journal of Industrial Microbiology & Biotechnology, 20, 132–138. doi:10.1038/sj.jim.2900496.

    Article  CAS  Google Scholar 

  24. Keating, J. D., Panganiban, C., & Mansfield, S. D. (2006). Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds. Biotechnology and Bioengineering, 93, 1196–1206. doi:10.1002/bit.20838.

    Article  CAS  Google Scholar 

  25. Matsumura, M., Shimoda, M., Arii, T., & Kataoka, H. (1991). Adaptation of hybridoma cells to higher ammonia concentration. Cytotechnology, 7, 103–112.

    CAS  Google Scholar 

  26. Prentice, H. L., Ehrenfels, B. N., & Sisk, W. P. (2007). Improving Performance of Mammalian Cells in Fed-Batch Processes through “Bioreactor Evolution”. Biotechnology Progress, 23, 458–464.

    Article  CAS  Google Scholar 

  27. al-Rubeai, M., & Singh, R. P. (1998). Apoptosis in cell culture. Current Opinion in Biotechnology, 9, 152–156. doi:10.1016/S0958-1669(98)80108-0.

    Article  CAS  Google Scholar 

  28. Perani, A., Singh, R. P., Chauhan, R., & Al-Rubeai, M. (1998). Variable functions of bcl-2 in mediating bioreactor stress- induced apoptosis in hybridoma cells. Cytotechnology, 28, 12. doi:10.1023/A:1008002319400.

    Article  Google Scholar 

  29. Sonna, L. A., Fujita, J., Gaffin, S. L., & Lilly, C. M. (2002). Invited review: Effects of heat and cold stress on mammalian gene expression. J Appl Physiol, 92, 1725–1742.

    CAS  Google Scholar 

  30. Chu, E. H. (1983). Mutation systems in cultured mammalian cells. Annals of the New York Academy of Sciences, 407, 221–230. doi:10.1111/j.1749-6632.1983.tb47827.x.

    Article  CAS  Google Scholar 

  31. Carabeo, R. A., & Hackstadt, T. (2001). Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process. Infection and Immunity, 69, 5899–5904. doi:10.1128/IAI.69.9.5899-5904.2001.

    Article  CAS  Google Scholar 

  32. Urlaub, G., & Chasin, L. A. (1980). Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proceedings of the National Academy of Sciences of the United States of America, 77, 4216–4220. doi:10.1073/pnas.77.7.4216.

    Article  CAS  Google Scholar 

  33. Chiang, G. G., & Sisk, W. P. (2005). Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnology and Bioengineering, 91, 779–792. doi:10.1002/bit.20551.

    Article  CAS  Google Scholar 

  34. Nicolaides, N. C., Ebel, W., Kline, B., Chao, Q., Routhier, E., Sass, P. M., et al. (2005). Morphogenics as a tool for target discovery and drug development. Annals of the New York Academy of Sciences, 1059, 86–96. doi:10.1196/annals.1339.029.

    Article  CAS  Google Scholar 

  35. Radha, S., & Natarajan, A. T. (1998). Sodium arsenite-induced chromosomal aberrations in the Xq arm of Chinese hamster cell lines. Mutagenesis, 13, 229–234. doi:10.1093/mutage/13.3.229.

    Article  CAS  Google Scholar 

  36. Aebi, S., Kurdi-Haidar, B., Gordon, R., Cenni, B., Zheng, H., Fink, D., et al. (1996). Loss of DNA mismatch repair in acquired resistance to cisplatin. Cancer Research, 56, 3087–3090.

    CAS  Google Scholar 

  37. Nicolaides, N. C., Littman, S. J., Modrich, P., Kinzler, K. W., & Vogelstein, B. (1998). A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype. Molecular and Cellular Biology, 18, 1635–1641.

    CAS  Google Scholar 

  38. Grasso, L., Kline, J., Chao, Q., Routhier, E., Ebel, W., Sass, P. M., et al. (2004). Enhancing Therapeutic Antibodies and Titer Yields of Mammalian Cell Lines. BioProcess International, 2, 58–64.

    CAS  Google Scholar 

  39. Chapman, S., Oparka, K. J., & Roberts, A. G. (2005). New tools for in vivo fluorescence tagging. Current Opinion in Plant Biology, 8, 565–573. doi:10.1016/j.pbi.2005.09.011.

    Article  CAS  Google Scholar 

  40. Loening, A. M., Wu, A. M., & Gambhir, S. S. (2007). Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nature Methods, 4, 641–643. doi:10.1038/nmeth1070.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Betenbaugh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majors, B.S., Chiang, G.G. & Betenbaugh, M.J. Protein and Genome Evolution in Mammalian Cells for Biotechnology Applications. Mol Biotechnol 42, 216–223 (2009). https://doi.org/10.1007/s12033-009-9156-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-009-9156-x

Keywords

Navigation