Abstract
Analysis of the Thermoplasma acidophilum DSM 1728 genome identified two putative alcohol dehydrogenase (ADH) open reading frames showing 50.4% identity against each other. The corresponding genes Ta0841 and Ta1316 encode proteins of 336 and 328 amino acids with molecular masses of 36.48 and 36.01 kDa, respectively. The genes were expressed in Escherichia coli and the recombinant enzymes were functionally assessed for activity. Throughout the study only Ta1316 ADH resulted active in the oxidative reaction in the pH range 2–8 (optimal pH 5.0) and temperatures from 25 to 90°C (optimal 75°C). This ADH catalyzes the oxidation of several alcohols such as ethanol, methanol, 2-propanol, butanol, and pentanol during the reduction of the cofactor NAD+. The highest activity was found in the presence of ethanol producing optically pure acetaldehyde. The specific enzyme activity of the purified Ta1316 ADH with ethanol as a substrate in the optimal conditions was 628.7 U/mg.



Similar content being viewed by others
Abbreviations
- ADH:
-
Alcohol dehydrogenase
- Orf :
-
Open reading frame
- NAD:
-
Nicotin adenine dinucleotide
References
Darland, G., Brock, T. D., Samsonoff, W., & Conti, S. F. (1970). A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science, 170, 1416–1418. doi:10.1126/science.170.3965.1416.
Segerer, A., Stetter, K. O., & Klink, F. (1985). Two contrary modes of chemolithotrophy in the same archaebacterium. Nature, 313, 787–789. doi:10.1038/313787a0.
Hsung, J. C., & Haug, A. (1975). Intracellular pH of Thermoplasma acidophila. Biochimica et Biophysica Acta, 389, 477–482. doi:10.1016/0005-2736(75)90158-3.
Ruepp, A., Graml, W., Santos-Martinez, M. L., Koretke, K. K., Volker, C., Mewes, H. W., et al. (2000). The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature, 407, 508–513. doi:10.1038/35035069.
Littlechild, J. A., Guy, J. E., & Isupov, M. N. (2004). Hyperthermophilic dehydrogenase enzymes. Biochemical Society Transactions, 32, 255–258. doi:10.1042/BST0320255.
Machielsen, R., & van der Oost, J. (2006). Production and characterization of a thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. The FEBS Journal, 273, 2722–2729. doi:10.1111/j.1742-4658.2006.05290.x.
Radianingtyas, H., & Wright, P. C. (2003). Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiology Reviews, 27, 593–616. doi:10.1016/S0168-6445(03)00068-8.
Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: a review. Bioresource Technology, 89, 17–34. doi:10.1016/S0960-8524(03)00033-6.
Hess, M., & Antranikian, G. (2008). Archaeal alcohol dehydrogenase active at increased temperatures and in the presence of organic solvents. Applied Microbiology and Biotechnology, 77, 1003–1013. doi:10.1007/s00253-007-1238-8.
Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.
Kagi, J. H., & Vallee, B. L. (1960). The role of zinc in alcohol dehydrogenase. V. The effect of metal-binding agents on the structure of the yeast alcohol dehydrogenase molecule. The Journal of Biological Chemistry, 235, 3188–3192.
Jornvall, H., Hempel, J., von Bahr-Lindstrom, H., Hoog, J. O., & Vallee, B. L. (1987). Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects. Alcohol and Alcoholism Supplement (Oxford, Oxfordshire), 1, 13–23.
Kalberg, Y., & Persson, B. (2006). Prediction of coenzyme specificity in dehydrogenases/reductases. A hidden Markov model-based method and its application on complete genomes. The FEBS Journal, 273, 1177–1184. doi:10.1111/j.1742-4658.2006.05153.x.
Wierenga, R. K., Drenth, J., & Schulz, G. E. (1983). Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain of p-hydroxybenzoate hydroxylase with the FAD- as well as NADPH-binding domains of glutathione reductase. Journal of Molecular Biology, 167, 725–739. doi:10.1016/S0022-2836(83)80106-5.
Bogin, O., Peretz, M., & Burstein, Y. (1997). Thermoanaerobacter brockii alcohol dehydrogenase: characterization of the active site metal and its ligand amino acids. Protein Science, 6, 450–458.
Ammendola, S., Raia, C. A., Caruso, C., Camardella, L., D’Auria, S., De Rosa, M., et al. (1992). Thermostable NAD(+)-dependent alcohol dehydrogenase from Sulfolobus solfataricus: gene and protein sequence determination and relationship to other alcohol dehydrogenases. Biochemistry, 31, 12514–12523. doi:10.1021/bi00164a031.
Esposito, L., Sica, F., Raia, C. A., Giordano, A., Rossi, M., Mazzarella, L., et al. (2002). Crystal structure of the alcohol dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus at 1.85 A resolution. Journal of Molecular Biology, 318, 463–477. doi:10.1016/S0022-2836(02)00088-8.
Adolph, H. W., Zwart, P., Meijers, R., Hubatsch, I., Kiefer, M., Lamzin, V., et al. (2000). Structural basis for substrate specificity differences of horse liver alcohol dehydrogenase isozymes. Biochemistry, 39, 12885–12897. doi:10.1021/bi001376s.
LeBrun, L. A., & Plapp, B. V. (1999). Control of coenzyme binding to horse liver alcohol dehydrogenase. Biochemistry, 38, 12387–12393. doi:10.1021/bi991306p.
Cao, Y., Liao, L., Xu, X. W., Oren, A., Wang, C., Zhu, X. F., et al. (2008). Characterization of alcohol dehydrogenase from the haloalkaliphilic archaeon Natronomonas pharaonis. Extremophiles, 12, 471–476. doi:10.1007/s00792-007-0133-7.
Ceci, P., Ilari, A., Falvo, E., Giangiacomo, L., & Chiancone, E. (2005). Reassessment of protein stability, DNA binding, and protection of Mycobacterium smegmatis Dps. The Journal of Biological Chemistry, 280, 34776–34785. doi:10.1074/jbc.M502343200.
Neet, K. E., & Timm, D. E. (1994). Conformational stability of dimeric proteins: Quantitative studies by equilibrium denaturation. Protein Science, 3, 2167–2174.
Villeret, V., Clantin, B., Tricot, C., Legrain, C., Roovers, M., Stalon, V., et al. (1998). The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures. Proceedings of the National Academy of Sciences of the U S A, 95, 2801–2806. doi:10.1073/pnas.95.6.2801.
Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews, 65, 1–43. doi:10.1128/MMBR.65.1.1-43.2001.
Cannio, R., Fiorentino, G., Carpinelli, P., Rossi, M., & Bartolucci, S. (1996). Cloning and overexpression in Escherichia coli of the genes encoding NAD-dependent alcohol dehydrogenase from two Sulfolobus species. Journal of Bacteriology, 178, 301–305.
Abokitse, K., & Hummel, W. (2003). Cloning, sequence analysis, and heterologous expression of the gene encoding a (S)-specific alcohol dehydrogenase from Rhodococcus erythropolis DSM 43297. Applied Microbiology and Biotechnology, 62, 380–386. doi:10.1007/s00253-003-1310-y.
Keinan, E., Hafeli, E., Seth, K., & Lamed, R. (1986). Thermostable enzymes in organic synthesis. Asymmetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium brockii. Journal of the American Chemical Society, 108, 162–169. doi:10.1021/ja00261a026.
Rella, R., Raia, C. A., Pensa, M., Pisani, F. M., Gambacorta, A., De Rosa, M., et al. (1987). A novel archaebacterial NAD+-dependent alcohol dehydrogenase. Purification and properties. European Journal of Biochemistry, 167, 475–479. doi:10.1111/j.1432-1033.1987.tb13361.x.
Searcy, D. G. (1976). Thermoplasma acidophilum: Intracellular pH and potassium concentration. Biochimica et Biophysica Acta, 451, 278–286.
Luke, K. A., Higgins, C. L., & Wittung-Stafshede, P. (2007). Thermodynamic stability and folding of proteins from hyperthermophilic organisms. The FEBS Journal, 274, 4023–4033. doi:10.1111/j.1742-4658.2007.05955.x.
Dock, C., Hess, M., & Antranikian, G. (2008). A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic Euryarchaeon Thermoplasma acidophilum. Applied Microbiology and Biotechnology, 78, 105–114. doi:10.1007/s00253-007-1293-1.
Pamnani, V., Tamura, T., Lupas, A., Peters, J., Cejka, Z., Ashraf, W., et al. (1997). Cloning, sequencing and expression of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum. FEBS Letters, 404, 263–268. doi:10.1016/S0014-5793(97)00138-5.
Santos, L., Frickey, T., Peters, J., Baumeister, W., Lupas, A., & Zwickl, P. (2004). Thermoplasma acidophilum TAA43 is an archaeal member of the eukaryotic meiotic branch of AAA ATPases. Biological Chemistry, 385, 1105–1111. doi:10.1515/BC.2004.144.
Neale, A. D., Scopes, R. K., Kelly, J. M., & Wettenhall, R. E. (1986). The two alcohol dehydrogenases of Zymomonas mobilis. Purification by differential dye ligand chromatography, molecular characterization and physiological roles. European Journal of Biochemistry, 154, 119–124. doi:10.1111/j.1432-1033.1986.tb09366.x.
Andersson, L., & Mosbach, K. (1982). Alcohol dehydrogenase from horse liver by affinity chromatography. Methods in Enzymology, 89(Pt D), 435–445.
Pietruszko, R. (1982). Alcohol dehydrogenase from horse liver, steroid-active SS isoenzyme. Methods in Enzymology, 89, 429–435.
Acknowledgment
Erika N. Marino-Marmolejo was supported by the Graduate Scholarship No. 182072 from the National Council for Science and Technology (CONACYT), Mexico.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Marino-Marmolejo, E.N., De León-Rodríguez, A., de la Rosa, A.P.B. et al. Heterologous Expression and Characterization of an Alcohol Dehydrogenase from the Archeon Thermoplasma acidophilum . Mol Biotechnol 42, 61–67 (2009). https://doi.org/10.1007/s12033-008-9130-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12033-008-9130-z


