Skip to main content
Log in

Heterologous Expression and Characterization of an Alcohol Dehydrogenase from the Archeon Thermoplasma acidophilum

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Analysis of the Thermoplasma acidophilum DSM 1728 genome identified two putative alcohol dehydrogenase (ADH) open reading frames showing 50.4% identity against each other. The corresponding genes Ta0841 and Ta1316 encode proteins of 336 and 328 amino acids with molecular masses of 36.48 and 36.01 kDa, respectively. The genes were expressed in Escherichia coli and the recombinant enzymes were functionally assessed for activity. Throughout the study only Ta1316 ADH resulted active in the oxidative reaction in the pH range 2–8 (optimal pH 5.0) and temperatures from 25 to 90°C (optimal 75°C). This ADH catalyzes the oxidation of several alcohols such as ethanol, methanol, 2-propanol, butanol, and pentanol during the reduction of the cofactor NAD+. The highest activity was found in the presence of ethanol producing optically pure acetaldehyde. The specific enzyme activity of the purified Ta1316 ADH with ethanol as a substrate in the optimal conditions was 628.7 U/mg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADH:

Alcohol dehydrogenase

Orf :

Open reading frame

NAD:

Nicotin adenine dinucleotide

References

  1. Darland, G., Brock, T. D., Samsonoff, W., & Conti, S. F. (1970). A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science, 170, 1416–1418. doi:10.1126/science.170.3965.1416.

    Article  CAS  Google Scholar 

  2. Segerer, A., Stetter, K. O., & Klink, F. (1985). Two contrary modes of chemolithotrophy in the same archaebacterium. Nature, 313, 787–789. doi:10.1038/313787a0.

    Article  CAS  Google Scholar 

  3. Hsung, J. C., & Haug, A. (1975). Intracellular pH of Thermoplasma acidophila. Biochimica et Biophysica Acta, 389, 477–482. doi:10.1016/0005-2736(75)90158-3.

    Article  CAS  Google Scholar 

  4. Ruepp, A., Graml, W., Santos-Martinez, M. L., Koretke, K. K., Volker, C., Mewes, H. W., et al. (2000). The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature, 407, 508–513. doi:10.1038/35035069.

    Article  CAS  Google Scholar 

  5. Littlechild, J. A., Guy, J. E., & Isupov, M. N. (2004). Hyperthermophilic dehydrogenase enzymes. Biochemical Society Transactions, 32, 255–258. doi:10.1042/BST0320255.

    Article  CAS  Google Scholar 

  6. Machielsen, R., & van der Oost, J. (2006). Production and characterization of a thermostable L-threonine dehydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. The FEBS Journal, 273, 2722–2729. doi:10.1111/j.1742-4658.2006.05290.x.

    Article  CAS  Google Scholar 

  7. Radianingtyas, H., & Wright, P. C. (2003). Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria. FEMS Microbiology Reviews, 27, 593–616. doi:10.1016/S0168-6445(03)00068-8.

    Article  CAS  Google Scholar 

  8. Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: a review. Bioresource Technology, 89, 17–34. doi:10.1016/S0960-8524(03)00033-6.

    Article  CAS  Google Scholar 

  9. Hess, M., & Antranikian, G. (2008). Archaeal alcohol dehydrogenase active at increased temperatures and in the presence of organic solvents. Applied Microbiology and Biotechnology, 77, 1003–1013. doi:10.1007/s00253-007-1238-8.

    Article  CAS  Google Scholar 

  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  11. Kagi, J. H., & Vallee, B. L. (1960). The role of zinc in alcohol dehydrogenase. V. The effect of metal-binding agents on the structure of the yeast alcohol dehydrogenase molecule. The Journal of Biological Chemistry, 235, 3188–3192.

    CAS  Google Scholar 

  12. Jornvall, H., Hempel, J., von Bahr-Lindstrom, H., Hoog, J. O., & Vallee, B. L. (1987). Alcohol and aldehyde dehydrogenases: structures of the human liver enzymes, functional properties and evolutionary aspects. Alcohol and Alcoholism Supplement (Oxford, Oxfordshire), 1, 13–23.

    CAS  Google Scholar 

  13. Kalberg, Y., & Persson, B. (2006). Prediction of coenzyme specificity in dehydrogenases/reductases. A hidden Markov model-based method and its application on complete genomes. The FEBS Journal, 273, 1177–1184. doi:10.1111/j.1742-4658.2006.05153.x.

    Article  CAS  Google Scholar 

  14. Wierenga, R. K., Drenth, J., & Schulz, G. E. (1983). Comparison of the three-dimensional protein and nucleotide structure of the FAD-binding domain of p-hydroxybenzoate hydroxylase with the FAD- as well as NADPH-binding domains of glutathione reductase. Journal of Molecular Biology, 167, 725–739. doi:10.1016/S0022-2836(83)80106-5.

    Article  CAS  Google Scholar 

  15. Bogin, O., Peretz, M., & Burstein, Y. (1997). Thermoanaerobacter brockii alcohol dehydrogenase: characterization of the active site metal and its ligand amino acids. Protein Science, 6, 450–458.

    CAS  Google Scholar 

  16. Ammendola, S., Raia, C. A., Caruso, C., Camardella, L., D’Auria, S., De Rosa, M., et al. (1992). Thermostable NAD(+)-dependent alcohol dehydrogenase from Sulfolobus solfataricus: gene and protein sequence determination and relationship to other alcohol dehydrogenases. Biochemistry, 31, 12514–12523. doi:10.1021/bi00164a031.

    Article  CAS  Google Scholar 

  17. Esposito, L., Sica, F., Raia, C. A., Giordano, A., Rossi, M., Mazzarella, L., et al. (2002). Crystal structure of the alcohol dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus at 1.85 A resolution. Journal of Molecular Biology, 318, 463–477. doi:10.1016/S0022-2836(02)00088-8.

    Article  CAS  Google Scholar 

  18. Adolph, H. W., Zwart, P., Meijers, R., Hubatsch, I., Kiefer, M., Lamzin, V., et al. (2000). Structural basis for substrate specificity differences of horse liver alcohol dehydrogenase isozymes. Biochemistry, 39, 12885–12897. doi:10.1021/bi001376s.

    Article  CAS  Google Scholar 

  19. LeBrun, L. A., & Plapp, B. V. (1999). Control of coenzyme binding to horse liver alcohol dehydrogenase. Biochemistry, 38, 12387–12393. doi:10.1021/bi991306p.

    Article  CAS  Google Scholar 

  20. Cao, Y., Liao, L., Xu, X. W., Oren, A., Wang, C., Zhu, X. F., et al. (2008). Characterization of alcohol dehydrogenase from the haloalkaliphilic archaeon Natronomonas pharaonis. Extremophiles, 12, 471–476. doi:10.1007/s00792-007-0133-7.

    Article  CAS  Google Scholar 

  21. Ceci, P., Ilari, A., Falvo, E., Giangiacomo, L., & Chiancone, E. (2005). Reassessment of protein stability, DNA binding, and protection of Mycobacterium smegmatis Dps. The Journal of Biological Chemistry, 280, 34776–34785. doi:10.1074/jbc.M502343200.

    Article  CAS  Google Scholar 

  22. Neet, K. E., & Timm, D. E. (1994). Conformational stability of dimeric proteins: Quantitative studies by equilibrium denaturation. Protein Science, 3, 2167–2174.

    Article  CAS  Google Scholar 

  23. Villeret, V., Clantin, B., Tricot, C., Legrain, C., Roovers, M., Stalon, V., et al. (1998). The crystal structure of Pyrococcus furiosus ornithine carbamoyltransferase reveals a key role for oligomerization in enzyme stability at extremely high temperatures. Proceedings of the National Academy of Sciences of the U S A, 95, 2801–2806. doi:10.1073/pnas.95.6.2801.

    Article  CAS  Google Scholar 

  24. Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews, 65, 1–43. doi:10.1128/MMBR.65.1.1-43.2001.

    Article  CAS  Google Scholar 

  25. Cannio, R., Fiorentino, G., Carpinelli, P., Rossi, M., & Bartolucci, S. (1996). Cloning and overexpression in Escherichia coli of the genes encoding NAD-dependent alcohol dehydrogenase from two Sulfolobus species. Journal of Bacteriology, 178, 301–305.

    CAS  Google Scholar 

  26. Abokitse, K., & Hummel, W. (2003). Cloning, sequence analysis, and heterologous expression of the gene encoding a (S)-specific alcohol dehydrogenase from Rhodococcus erythropolis DSM 43297. Applied Microbiology and Biotechnology, 62, 380–386. doi:10.1007/s00253-003-1310-y.

    Article  CAS  Google Scholar 

  27. Keinan, E., Hafeli, E., Seth, K., & Lamed, R. (1986). Thermostable enzymes in organic synthesis. Asymmetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium brockii. Journal of the American Chemical Society, 108, 162–169. doi:10.1021/ja00261a026.

    Article  CAS  Google Scholar 

  28. Rella, R., Raia, C. A., Pensa, M., Pisani, F. M., Gambacorta, A., De Rosa, M., et al. (1987). A novel archaebacterial NAD+-dependent alcohol dehydrogenase. Purification and properties. European Journal of Biochemistry, 167, 475–479. doi:10.1111/j.1432-1033.1987.tb13361.x.

    Article  CAS  Google Scholar 

  29. Searcy, D. G. (1976). Thermoplasma acidophilum: Intracellular pH and potassium concentration. Biochimica et Biophysica Acta, 451, 278–286.

    CAS  Google Scholar 

  30. Luke, K. A., Higgins, C. L., & Wittung-Stafshede, P. (2007). Thermodynamic stability and folding of proteins from hyperthermophilic organisms. The FEBS Journal, 274, 4023–4033. doi:10.1111/j.1742-4658.2007.05955.x.

    Article  CAS  Google Scholar 

  31. Dock, C., Hess, M., & Antranikian, G. (2008). A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic Euryarchaeon Thermoplasma acidophilum. Applied Microbiology and Biotechnology, 78, 105–114. doi:10.1007/s00253-007-1293-1.

    Article  CAS  Google Scholar 

  32. Pamnani, V., Tamura, T., Lupas, A., Peters, J., Cejka, Z., Ashraf, W., et al. (1997). Cloning, sequencing and expression of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum. FEBS Letters, 404, 263–268. doi:10.1016/S0014-5793(97)00138-5.

    Article  CAS  Google Scholar 

  33. Santos, L., Frickey, T., Peters, J., Baumeister, W., Lupas, A., & Zwickl, P. (2004). Thermoplasma acidophilum TAA43 is an archaeal member of the eukaryotic meiotic branch of AAA ATPases. Biological Chemistry, 385, 1105–1111. doi:10.1515/BC.2004.144.

    Article  CAS  Google Scholar 

  34. Neale, A. D., Scopes, R. K., Kelly, J. M., & Wettenhall, R. E. (1986). The two alcohol dehydrogenases of Zymomonas mobilis. Purification by differential dye ligand chromatography, molecular characterization and physiological roles. European Journal of Biochemistry, 154, 119–124. doi:10.1111/j.1432-1033.1986.tb09366.x.

    Article  CAS  Google Scholar 

  35. Andersson, L., & Mosbach, K. (1982). Alcohol dehydrogenase from horse liver by affinity chromatography. Methods in Enzymology, 89(Pt D), 435–445.

    Article  CAS  Google Scholar 

  36. Pietruszko, R. (1982). Alcohol dehydrogenase from horse liver, steroid-active SS isoenzyme. Methods in Enzymology, 89, 429–435.

    Article  Google Scholar 

Download references

Acknowledgment

Erika N. Marino-Marmolejo was supported by the Graduate Scholarship No. 182072 from the National Council for Science and Technology (CONACYT), Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia Santos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marino-Marmolejo, E.N., De León-Rodríguez, A., de la Rosa, A.P.B. et al. Heterologous Expression and Characterization of an Alcohol Dehydrogenase from the Archeon Thermoplasma acidophilum . Mol Biotechnol 42, 61–67 (2009). https://doi.org/10.1007/s12033-008-9130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9130-z

Keywords