Skip to main content
Log in

Structural Variations in Protein Superfamilies: Actin and Tubulin

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Structures of homologous proteins are usually conserved during evolution, as are critical active site residues. This is the case for actin and tubulin, the two most important cytoskeleton proteins in eukaryotes. Actins and their related proteins (Arps) constitute a large superfamily whereas the tubulin family has fewer members. Unaligned sequences of these two protein families were analysed by searching for short groups of family-specific amino acid residues, that we call motifs, and by counting the number of residues from one motif to the next. For each sequence, the set of motif-to-motif residue counts forms a subfamily-specific pattern (landmark pattern) allowing actin and tubulin superfamily members to be identified and sorted into subfamilies. The differences between patterns of individual subfamilies are due to inserts and deletions (indels). Inserts appear to have arisen at an early stage in eukaryote evolution as suggested by the small but consistent kingdom-dependent differences found within many Arp subfamilies and in γ-tubulins. Inserts tend to be in surface loops where they can influence subfamily-specific function without disturbing the core structure of the protein. The relatively few indels found for tubulins have similar positions to established results, whereas we find many previously unreported indel positions and lengths for the metazoan Arps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jonassen, I., Collins, J. F., & Higgins, P. G. (1995). Finding flexible patterns in unaligned protein sequences. Protein Science, 4, 1587–1595.

    Article  CAS  Google Scholar 

  2. Ye, K., Kosters, W. A., & Ijerman, A. (2007). An efficient, versatile and scalable pattern growth approach to mine frequent patterns in unaligned protein sequences. Bioinformatics, 23, 687–693.

    Article  CAS  Google Scholar 

  3. Wade, R. H. (2002). Sequence landmark patterns identify and characterize protein families. Structure, 10, 1329–1336.

    Article  CAS  Google Scholar 

  4. Cope, M. J. T. V., Whisstock, J., Rayment, I., & Kendrick-Jones, J. (1996). Conservation within the myosin motor domain: Implications for structure and function. Structure, 4, 969–987.

    Article  CAS  Google Scholar 

  5. Kim, A. J., & Endow, S. A. (2000). A kinesin family tree. Journal of Cell Science, 113, 3681–3682.

    CAS  Google Scholar 

  6. McDowell, J. M., Huang, S., McKinney, E. C., An, Y. Q., & Meagher, R. B. (1996). Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics, 142, 587–602.

    CAS  Google Scholar 

  7. Kandasamy, M. K., McKinney, E. C., & Meagher, R. B. (2002). Functional nonequivalency of actin isovariants in Arabidopsis. Molecular Biology of the Cell, 13, 251–261.

    Article  CAS  Google Scholar 

  8. Blessing, C. A., Ugrinova, G. T., & Goodson, H. V. (2004). Actin and Arps: Action in the nucleus. Trends in Cell Biology, 14, 435–442.

    Article  CAS  Google Scholar 

  9. Poch, O., & Winsor, B. (1997). Who’s who among the Saccharomyces cerivisiae actin-related proteins? A classification and nomenclature proposal for a large family. Yeast, 13, 1053–1058.

    Article  CAS  Google Scholar 

  10. Goodson, H. V., & Hawse, W. F. (2002). Molecular evolution of the actin family. Journal of Cell Science, 115, 2619–2622.

    CAS  Google Scholar 

  11. Szerlong, H., Saha, A., & Cairns, B. R. (2003). The nuclear actin-related proteins Arp7 and Arp9: A dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO Journal, 22, 3175–3187.

    Article  CAS  Google Scholar 

  12. Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., & Holmes, K. C. (1990). Atomic structure of the actin:DNase 1 complex. Nature, 347, 37–44.

    Article  CAS  Google Scholar 

  13. Otterbein, L. R., Graceffa, P., & Dominguez, R. (2001). The crystal structure of uncomplexed actin in the ADP state. Science, 293, 708–711.

    Article  CAS  Google Scholar 

  14. Vorobiev, S., Strokopytov, B., Drubin, D. G., Frieden, C., Ono, S., Condeelis, J., et al. (2003). The structure of nonvertebrate actin: Implications for the ATP hydrolytic mechanism. Proceedings of the National Academy of Sciences of the United States of America, 100, 5760–5765.

    Article  CAS  Google Scholar 

  15. Robinson, R. C., Turbedsky, K., Kaiser, D. A., Marchand, J.-B., Higgs, H. N., Choe, S., et al. (2001). Crystal structure of Arp2/3 complex. Science, 294, 1679–1684.

    Article  CAS  Google Scholar 

  16. Nolen, B. J., Littlefield, R. S., & Pollard, T. D. (2004). Crystal structures of actin-related protein 2/3 complex with bound ATP or ADP. Proceedings of the National Academy of Sciences of the United States of America, 101, 15627–15632.

    Article  CAS  Google Scholar 

  17. van den Ent, F., Amos, L. A., & Löwe, J. (2001). Prokaryotic origin of the actin cytoskeleton. Nature, 413, 39–44.

    Article  CAS  Google Scholar 

  18. van den Ent, F., & Löwe, J. (2000). Crystal structure of the cell division protein FtsA. EMBO Journal, 19, 5300–5307.

    Article  Google Scholar 

  19. van den Ent, F., Moller-Jensen, J., Amos, L. A., Gerdes, K., & Löwe, J. (2002). F-actin-like filaments formed by plasmid segregation protein ParM. EMBO Journal, 21, 6935–6943.

    Article  Google Scholar 

  20. Wood, K. W., Cornwell, W. D., & Jackson, J. R. (2001). Past and future of the mitotic spindle as an oncology target. Current Opinion in Pharmacology, 1, 370–377.

    Article  CAS  Google Scholar 

  21. Ludueña, R. F. (1998). Multiple forms of tubulin: Different gene products and covalent modifications. International Review of Cytology, 178, 207–275.

    Article  Google Scholar 

  22. Oakley, C. E., & Oakley, B. R. (1989). Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature, 338, 662–664.

    Article  CAS  Google Scholar 

  23. Oakley, B. R. (1992). γ-tubulin: The microtubule organiser? Trends in Cell Biology, 2, 1–5.

    Article  CAS  Google Scholar 

  24. Dutcher, S. K. (2003). Long-lost relatives reappear: Identification of new members of the tubulin superfamily. Current Opinion in Microbiology, 6, 634–640.

    Article  CAS  Google Scholar 

  25. Dictenberg, J. B., Zimmerman, W., Sparks, C. A., Young, A., Vidair, C., Zheng, Y., et al. (1998). Pericentrin and γ-tubulin form a protein complex and are organised into a novel lattice at the centrosome. Journal of Cell Biology, 141, 163–174.

    Article  CAS  Google Scholar 

  26. McKean, P. G., Vaughan, S., & Gull, K. (2001). The extended tubulin superfamily. Journal of Cell Science, 114, 2723–2733.

    CAS  Google Scholar 

  27. Goehring, N. W., & Beckwith, J. (2005). Diverse paths to midcell: Assembly of the bacterial cell division machinery. Current Biology, 15, R514–R526.

    Article  CAS  Google Scholar 

  28. Erickson, H. P. (1997). FtsZ, a tubulin homologue in prokaryote cell division. Trends in Cell Biology, 7, 362–370.

    Article  CAS  Google Scholar 

  29. Löwe, J., & Amos, L. A. (1998). Crystal structure of the bacterial cell division protein FtsZ. Nature, 391, 203–206.

    Article  Google Scholar 

  30. Nogales, E., Downing, K. H., Amos, L. A., & Löwe, J. (1998). Tubulin and FtsZ form a distinct family of GTPases. Nature Structural Biology, 5, 451–458.

    Article  CAS  Google Scholar 

  31. Oliva, M. A., Cordell, S. C., & Löwe, J. (2004). Structural insights into FtsZ protofilament formation. Nature Structural & Molecular Biology, 11, 1243–1250.

    Article  CAS  Google Scholar 

  32. Aldaz, H., Rice, L. M., Stearns, T., & Agard, D. A. (2005). Insights into microtubule nucleation from the crystal structure of human γ-tubulin. Nature, 435, 523–527.

    Article  CAS  Google Scholar 

  33. DeLano, W. L. (2002). The PyMol molecular graphics system. San Carlos, CA: DeLano Scientific.

    Google Scholar 

  34. Löwe, J., Li, H., Downing, K. H., & Nogales, E. (2001). Refined structure of αβ-tubulin at 3.5 Å resolution. Journal of Molecular Biology, 313, 1045–1057.

    Article  CAS  Google Scholar 

  35. Combet, C., Blanchet, C., Geourjon, C., & Deléage, G. (2000). NPS@: Network protein sequence analysis. Trends in Biological Sciences, 25, 147–150.

    Article  CAS  Google Scholar 

  36. Steenkamp, E. T., Wright, J., & Baldauf, S. L. (2006). The protistan origins of animals and fungi. Molecular Biology and Evolution, 23, 93–106.

    Article  CAS  Google Scholar 

  37. Nogales, E., Wolf, S. G., & Downing, K. H. (1998). Structure of the αβ-tubulin dimer by electron crystallography. Nature, 391, 199–203.

    Article  CAS  Google Scholar 

  38. Inclan, Y. F., & Nogales, E. (2001). Structural models for the self assembly and microtubule interactions of γ-, δ- and ε-tubulin. Journal of Cell Science, 114, 413–422.

    CAS  Google Scholar 

  39. Bork, P., Sander, C., & Valencia, A. (1992). An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proceedings of the National Academy of Sciences of the United States of America, 89, 7290–7294.

    Article  CAS  Google Scholar 

  40. Croft, K. E., Dalby, A. B., Hogan, D. J., Orr, K. E., Hewitt, E. A., Africa, R. J., et al. (2003). Macronuclear molecules encoding actins in spirotrichs. Journal of Molecular Evolution, 56, 341–350.

    Article  CAS  Google Scholar 

  41. Holm, L., & Park, J. (2000). DaliLite workbench for protein structure comparison. Bioinformatics, 16, 566–567.

    Article  CAS  Google Scholar 

  42. Beltzner, C. C., & Pollard, T. D. (2004). Identification of functionally important residues of the Arp2/3 complex by analysis of homology models from diverse species. Journal of Molecular Biology, 336, 551–565.

    Article  CAS  Google Scholar 

  43. Muller, J., Oma, Y., Vallar, L., Friederich, E., Poch, O., & Winsor, B. (2005). Sequence and comparative genomic analysis of actin-related proteins. Molecular Biology of the Cell, 16, 5736–5748.

    Article  CAS  Google Scholar 

  44. Carmel, L., Rogozin, I. B., Wolf, Y. I., & Koonin, E. V. (2007). Evolutionarily conserved genes preferentially accumulate introns. Genome Research, 17, 1045–1050.

    Article  CAS  Google Scholar 

  45. Sadunsky, T., Newmann, A. J., & Dibb, N. J. (2004). Exon junction sequences as cryptic splice sites: Implications for intron origin. Current Biology, 14, 505–509.

    Google Scholar 

  46. Craik, C. S., Rutter, R. J., & Fletterick, R. (1983). Splice junctions: Association with variation in protein structure. Science, 220, 1125–1129.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Metoz for an introduction to PERL and programming advice. We are grateful for financial support from the Association pour la Recherche sur le Cancer (ARC), Grant number 3973.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Wade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade, R.H., Garcia-Saez, I. & Kozielski, F. Structural Variations in Protein Superfamilies: Actin and Tubulin. Mol Biotechnol 42, 49–60 (2009). https://doi.org/10.1007/s12033-008-9128-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9128-6

Keywords

Navigation