Skip to main content
Log in

Allelic Variation in the Porcine MYF5 Gene Detected by PCR–SSCP

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The MYF5 gene has been reported to be integral to muscle growth and development, and hence it has been considered as a candidate gene for meat selection programs in pig. To ascertain whether there was variation in the porcine MYF5 gene, we have developed a method of PCR–single-strand conformational polymorphism (PCR–SSCP) analysis. In this study, two coding regions of the MYF5 gene were investigated. Four unique SSCP patterns were detected in exon 1 and three patterns were identified in exon 3. Two SNPs detected in exon 1 led to a non-synonymous alanine/proline substitution. A nucleotide change in exon 3 did not affect the amino acid sequence. Five extended haplotypes were observed across the two regions. The variation detected in this study might underpin the development of gene markers for improved muscle growth in pig breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Braun, T., & Arnold, H. H. (1996). Myf-5 and myoD genes are activated in distinct mesenchymal stem cells and determine different skeletal muscle cell lineages. The EMBO Journal, 15, 310–318.

    CAS  Google Scholar 

  2. Dohoney, K. M., & Gelles, J. (2001). χ-Sequence recognition and DNA translocation by single RecBCD helicase/nuclease molecules. Nature, 409, 370–374. doi:10.1038/35053124.

    Article  CAS  Google Scholar 

  3. Klosowska, D., Kuryl, J., Elminowska-Wenda, G., Kapelanski, W., Walasik, K., PierZchala, M., et al. (2004). A relationship between the PCR-RFLP polymorphism in porcine MYOG, MYOD1 and MYF5 genes and microstructural characteristics of m. longissimus lumborum in Pietrain × (Polish Large White × Polish Landrace) crosses. Czech Journal of Animal Science, 49, 99–107.

    CAS  Google Scholar 

  4. Krawinkel, U., Zoebelein, G., & Bothwell, A. L. (1986). Palindromic sequences are associated with sites of DNA breakage during gene conversion. Nucleic Acids Research, 14, 3871–3872. doi:10.1093/nar/14.9.3871.

    Article  CAS  Google Scholar 

  5. Li, C., Basarab, J., Snelling, W. M., Benkel, B., Murdoch, B., Hansen, C., et al. (2004). Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus. Journal of Animal Science, 82, 1–7.

    CAS  Google Scholar 

  6. Liu, M., Peng, J., Xu, D., Zheng, R., Li, F., Li, J., et al. (2007). Associations of MYF5 gene polymorphisms with meat quality traits in different domestic pig (Sus scrofa) populations. Genetics and Molecular Biology, 30, 370–374.

    Google Scholar 

  7. Moghadam, H. K., Ferguson, M. M., Rexroad, C. E., Coulibaly, I., & Danzmann, R. G. (2007). Genomic organization of the IGF1, IGF2, MYF5, MYF6 and GRF/PACAP genes across Salmoninae genera. Animal Genetics, 38, 527–532. doi:10.1111/j.1365-2052.2007.01645.x.

    Article  CAS  Google Scholar 

  8. Nattrass, G. S., Quigley, S. P., Gardner, G. E., Bawden, C. S., McLaughlan, C. J., Hegarty, R. S., et al. (2006). Genotypic and nutritional regulation of gene expression in two sheep hindlimb muscles with distinct myofibre and metabolic characteristics. Australian Journal of Agricultural Research, 57, 691–698. doi:10.1071/AR05101.

    Article  CAS  Google Scholar 

  9. Ortí, G., Hare, M., & Avise, J. (1997). Detection and isolation of nuclear haplotypes by PCR-SSCP. Molecular Ecology, 6, 575–580. doi:10.1046/j.1365-294X.1997.00212.x.

    Article  Google Scholar 

  10. Rawls, A., Morris, J. H., Rudnicki, M., Braun, T., Arnold, H. H., Klein, W. H., et al. (1995). Myogenin’s functions do not overlap with those of MyoD or Myf-5 during mouse embryogenesis. Developmental Biology, 172, 37–50. doi:10.1006/dbio.1995.0004.

    Article  CAS  Google Scholar 

  11. Sabourin, L. A., & Rudnicki, M. A. (2000). The molecular regulation of myogenesis. Clinical Genetics, 57, 16–25. doi:10.1034/j.1399-0004.2000.570103.x.

    Article  CAS  Google Scholar 

  12. Saitoh, O., Fujisawa-Sehara, A., Nabeshima, Y. I., & Periasamy, M. (1993). Expression of myogenic factors in denervated chicken breast muscle: Isolation of the chicken Myf5 gene. Nucleic Acids Research, 21, 2503–2509. doi:10.1093/nar/21.10.2503.

    Article  CAS  Google Scholar 

  13. Sanguinetti, C. L., Dias Neto, E., & Simpson, A. J. G. (1994). Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. BioTechniques, 17, 915–921.

    Google Scholar 

  14. Sunnucks, P., Wilson, A. C. C., Beheregaray, L. B., Zenger, K., French, J., & Taylor, A. C. (2000). SSCP is not so difficult: The application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Molecular Ecology, 9, 1699–1710. doi:10.1046/j.1365-294x.2000.01084.x.

    Article  CAS  Google Scholar 

  15. Temesgen, Z., Satoh, K., Uhl, J. R., Kline, B. C., & Cockerill, F. R. (1997). Use of polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) analysis to detect a point mutation in the catalase-peroxidase gene (katG) of Mycobacterium tuberculosis. Molecular and Cellular Probes, 11, 59–63. doi:10.1006/mcpr.1996.0077.

    Article  CAS  Google Scholar 

  16. te Pas, M. F. W., Harders, F. L., Soumillion, A., Born, L., Buist, W., & Meuwissen, T. H. E. (1999). Genetic variation at the porcine MYF-5 gene locus. Lack of association with meat production traits. Mammalian Genome, 10, 123–127. doi:10.1007/s003359900956.

    Article  CAS  Google Scholar 

  17. te Pas, M. F., Verburg, F. J., Gerritsen, C. L., & de Greef, K. H. (2000). Messenger ribonucleic acid expression of the MyoD gene family in muscle tissue at slaughter in relation to selection for porcine growth rate. Journal of Animal Science, 78, 69–77.

    CAS  Google Scholar 

  18. Urbański, P., & Kurył, J. (2004). New SNPs in the coding and 5′ flanking regions of porcine MYOD1 (MYF3) and MYF5 genes. Journal of Applied Genetics, 45, 325–329.

    Google Scholar 

  19. Verner, J., Humpolicek, P., & Knol, A. (2007). Impact of MYOD family genes on pork traits in Large White and Landrace pigs. Journal of Animal Breeding and Genetics, 124, 81–85. doi:10.1111/j.1439-0388.2007.00639.x.

    Article  CAS  Google Scholar 

  20. Zhou, H., & Hickford, J. G. H. (2008). Clonal polymerase chain reaction-single-strand conformational polymorphism analysis: An effective approach for identifying cloned sequences. Analytical Biochemistry, 378, 111–112. doi:10.1016/j.ab.2008.04.005.

    Article  CAS  Google Scholar 

  21. Zhou, H., Hickford, J. G. H., & Fang, Q. (2006). A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplication. Analytical Biochemistry, 354, 159–161. doi:10.1016/j.ab.2006.03.042.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Gene-Marker Laboratory, Lincoln University for financial support and Q. Fang, S. O. Byun, G. Yang and H. Gong for technical assistance. We also would like to thank The Department of Animal Science, Khon Kaen University, Thailand for providing some of the pig blood samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon G. H. Hickford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunhareang, S., Zhou, H. & Hickford, J.G.H. Allelic Variation in the Porcine MYF5 Gene Detected by PCR–SSCP. Mol Biotechnol 41, 208–212 (2009). https://doi.org/10.1007/s12033-008-9122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9122-z

Keywords

Navigation