Skip to main content
Log in

Characterization of the Regulatory Region of the Dopa Decarboxylase Gene in Medaka: An in vivo Green Fluorescent Protein Reporter Assay Combined with a Simple TA-Cloning Method

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The mechanism by which differentiated cells cooperatively express specific sets of genes in multicellular organisms is a fundamental question for biologists. Currently, the mechanism is primarily attributed to complex regulation of transcriptional machinery. Here, I provide a method for studying spatiotemporal characteristics of promoters in vivo by rapid construction of reporter gene-expression vectors based on simple TA-cloning using an in vivo eGFP reporter assay in Medaka (Oryzias latipes). As an application of this method, I focused on the dopa decarboxylase (Ddc) gene, an essential enzyme for production of neurotransmitters, dopamine, and serotonin. Based on the known structure of the Medaka genome, I predicted and cloned the approximately 3 kbp fragment flanking the Ddc gene. Using an eGFP reporter assay in vivo, I showed that it functions as a promoter, directing reporter gene expression in the brain, retina, epiphysis, and gut, but not in sympathetic ganglia, kidney, or liver. Thus, the procedure presented here provides a useful tool for rapid screening of possible promoter regions and for establishing germ line-transmitted transgenic lines of Medaka.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ddc :

Dopa decarboxylase

Hdc :

Histamine decarboxylase

eGFP :

Enhanced green fluorescent protein

MGD:

Medaka genome database

Dpi:

Day(s) post injection

Dpf:

Day(s) post fertilization

UTR:

Untranslated region

Bp:

Base pairs

CNS:

Central nervous system

PNS:

Peripheral nervous system

β-lac:

Beta-lactamase

PCR:

Polymerase chain reaction

HB:

Hybridization buffer

References

  1. Wakamatsu, Y., Pristyazhnyuk, S., Kinoshita, M., Tanaka, M., & Ozato, K. (2001). The see-through medaka: A fish model that is transparent throughout life. Proceedings of the National Academy of Sciences of the United States of America, 98, 10046–10050. doi:10.1073/pnas.181204298.

    Article  CAS  Google Scholar 

  2. Elsalini, O. A., & Rohr, K. B. (2003). Phenylthiourea disrupts thyroid function in developing zebrafish. Development Genes and Evolution, 212, 593–598.

    CAS  Google Scholar 

  3. Wang, W. D., Wang, Y., Wen, H. J., Buhler, D. R., & Hu, C. H. (2004). Phenylthiourea as a weak activator of aryl hydrocarbon receptor inhibiting 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced CYP1A1 transcription in zebrafish embryo. Biochemical Pharmacology, 68, 63–71. doi:10.1016/j.bcp.2004.03.010.

    Article  CAS  Google Scholar 

  4. Imai, S., Sasaki, T., Shimizu, A., Asakawa, S., Hori, H., & Shimizu, N. (2007). The genome size evolution of medaka (Oryzias latipes) and fugu (Takifugu rubripes). Genes & Genetic Systems, 82, 135–144. doi:10.1266/ggs.82.135.

    Article  CAS  Google Scholar 

  5. Ahsan, B., Kobayashi, D., Yamada, T., Kasahara, M., Sasaki, S., Saito, T. L., et al. (2008). UTGB/medaka: Genomic resource database for medaka biology. Nucleic Acids Research, 36, D747–D752. doi:10.1093/nar/gkm765.

    Article  CAS  Google Scholar 

  6. Kasahara, M., Naruse, K., Sasaki, S., Nakatani, Y., Qu, W., Ahsan, B., et al. (2007). The medaka draft genome and insights into vertebrate genome evolution. Nature, 447, 714–719. doi:10.1038/nature05846.

    Article  CAS  Google Scholar 

  7. Fujimori, K. E., Kawasaki, T., Deguchi, T., & Yuba, S. (in press). Characterization of a nervous system-specific promoter for growth-associated protein 43 gene in Medaka (Oryzias latipes). Brain Research. doi:10.1016/j.brainres.2008.09.071.

  8. Kumar, S., Tamura, K., & Nei, M. (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics, 5, 150–163. doi:10.1093/bib/5.2.150.

    Article  CAS  Google Scholar 

  9. Borovkov, A. Y., & Rivkin, M. I. (1997). XcmI-containing vector for direct cloning of PCR products. BioTechniques, 22, 812–814.

    CAS  Google Scholar 

  10. Goda, N., Tenno, T., Takasu, H., Hiroaki, H., & Shirakawa, M. (2004). The PRESAT-vector: asymmetric T-vector for high-throughput screening of soluble protein domains for structural proteomics. Protein Science, 13, 652–658. doi:10.1110/ps.03439004.

    Article  CAS  Google Scholar 

  11. Jo, C., & Jo, S. A. (2001). A simple method to construct T-vectors using XcmI cassettes amplified by nonspecific PCR. Plasmid, 45, 37–40. doi:10.1006/plas.2000.1500.

    Article  CAS  Google Scholar 

  12. Chen, Q. J., Zhou, H. M., Chen, J., & Wang, X. C. (2006). Using a modified TA cloning method to create entry clones. Analytical Biochemistry, 358, 120–125. doi:10.1016/j.ab.2006.08.015.

    Article  CAS  Google Scholar 

  13. Jeung, J. U., Cho, S. K., Shim, K. S., Ok, S. H., Lim, D. S., & Shin, J. S. (2002). Construction of two pGEM-7Zf(+) phagemid T-tail vectors using AhdI-restriction endonuclease sites for direct cloning of PCR products. Plasmid, 48, 160–163. doi:10.1016/S0147-619X(02)00122-1.

    Article  CAS  Google Scholar 

  14. Arashi-Heese, N., Miwa, M., & Shibata, H. (1999). XcmI site-containing vector for direct cloning and in vitro transcription of PCR product. Molecular Biotechnology, 12, 281–283. doi:10.1385/MB:12:3:281.

    Article  CAS  Google Scholar 

  15. Jo, C., Kang, B., & Jo, S. A. (2001). Development of new T-vectors containing the luciferase gene. Easy application for direct cloning of a promoter DNA. Molecular Biotechnology, 19, 331–334. doi:10.1385/MB:19:3:331.

    Article  CAS  Google Scholar 

  16. Saenz-de-Miera, L. E., & Ayala, F. J. (2004). Complex evolution of orthologous and paralogous decarboxylase genes. Journal of Evolutionary Biology, 17, 55–66. doi:10.1046/j.1420-9101.2003.00652.x.

    Article  CAS  Google Scholar 

  17. Ishii, S., Mizuguchi, H., Nishino, J., Hayashi, H., & Kagamiyama, H. (1996). Functionally important residues of aromatic l-amino acid decarboxylase probed by sequence alignment and site-directed mutagenesis. Journal of Biochemistry, 120, 369–376.

    CAS  Google Scholar 

  18. Burkhard, P., Dominici, P., Borri-Voltattorni, C., Jansonius, J. N., & Malashkevich, V. N. (2001). Structural insight into Parkinson’s disease treatment from drug-inhibited DOPA decarboxylase. Nature Structural Biology, 8, 963–967. doi:10.1038/nsb1101-963.

    Article  CAS  Google Scholar 

  19. Bertoldi, M., Castellani, S., & Bori Voltattorni, C. (2001). Mutation of residues in the coenzyme binding pocket of Dopa decarboxylase. Effects on catalytic properties. European Journal of Biochemistry, 268, 2975–2981. doi:10.1046/j.1432-1327.2001.02187.x.

    Article  CAS  Google Scholar 

  20. Ando-Yamamoto, M., Hayashi, H., Sugiyama, T., Fukui, H., Watanabe, T., & Wada, H. (1987). Purification of L-dopa decarboxylase from rat liver and production of polyclonal and monoclonal antibodies against it. Journal of Biochemistry, 101, 405–414.

    CAS  Google Scholar 

  21. Shirota, K., & Fujisawa, H. (1988). Purification and characterization of aromatic l-amino acid decarboxylase from rat kidney and monoclonal antibody to the enzyme. Journal of Neurochemistry, 51, 426–434. doi:10.1111/j.1471-4159.1988.tb01056.x.

    Article  CAS  Google Scholar 

  22. Kadonaga, J. T. (2004). Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell, 116, 247–257. doi:10.1016/S0092-8674(03)01078-X.

    Article  CAS  Google Scholar 

  23. Butler, J. E., & Kadonaga, J. T. (2002). The RNA polymerase II core promoter: A key component in the regulation of gene expression. Genes & Development, 16, 2583–2592. doi:10.1101/gad.1026202.

    Article  CAS  Google Scholar 

  24. Kleinjan, D. A., & van Heyningen, V. (2005). Long-range control of gene expression: Emerging mechanisms and disruption in disease. American Journal of Human Genetics, 76, 8–32. doi:10.1086/426833.

    Article  CAS  Google Scholar 

  25. Forghani, R., Garofalo, L., Foran, D. R., Farhadi, H. F., Lepage, P., Hudson, T. J., et al. (2001). A distal upstream enhancer from the myelin basic protein gene regulates expression in myelin-forming schwann cells. The Journal of Neuroscience, 21, 3780–3787.

    CAS  Google Scholar 

  26. Farhadi, H. F., Lepage, P., Forghani, R., Friedman, H. C., Orfali, W., Jasmin, L., et al. (2003). A combinatorial network of evolutionarily conserved myelin basic protein regulatory sequences confers distinct glial-specific phenotypes. The Journal of Neuroscience, 23, 10214–10223.

    CAS  Google Scholar 

  27. Taveggia, C., Pizzagalli, A., Fagiani, E., Messing, A., Feltri, M. L., & Wrabetz, L. (2004). Characterization of a Schwann cell enhancer in the myelin basic protein gene. Journal of Neurochemistry, 91, 813–824. doi:10.1111/j.1471-4159.2004.02745.x.

    Article  CAS  Google Scholar 

  28. Denarier, E., Forghani, R., Farhadi, H. F., Dib, S., Dionne, N., Friedman, H. C., et al. (2005). Functional organization of a Schwann cell enhancer. The Journal of Neuroscience, 25, 11210–11217. doi:10.1523/JNEUROSCI.2596-05.2005.

    Article  CAS  Google Scholar 

  29. Devine-Beach, K., Haas, S., & Khalili, K. (1992). Analysis of the proximal transcriptional element of the myelin basic protein gene. Nucleic Acids Research, 20, 545–550. doi:10.1093/nar/20.3.545.

    Article  CAS  Google Scholar 

  30. Hohl, M., & Thiel, G. (2005). Cell type-specific regulation of RE-1 silencing transcription factor (REST) target genes. The European Journal of Neuroscience, 22, 2216–2230. doi:10.1111/j.1460-9568.2005.04404.x.

    Article  Google Scholar 

  31. Chong, J. A., Tapia-Ramirez, J., Kim, S., Toledo-Aral, J. J., Zheng, Y., Boutros, M. C., et al. (1995). REST: A mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell, 80, 949–957. doi:10.1016/0092-8674(95)90298-8.

    Article  CAS  Google Scholar 

  32. Schoenherr, C. J., & Anderson, D. J. (1995). The neuron-restrictive silencer factor (NRSF): A coordinate repressor of multiple neuron-specific genes. Science, 267, 1360–1363. doi:10.1126/science.7871435.

    Article  CAS  Google Scholar 

  33. Albert, V. R., Lee, M. R., Bolden, A. H., Wurzburger, R. J., & Aguanno, A. (1992). Distinct promoters direct neuronal and nonneuronal expression of rat aromatic l-amino acid decarboxylase. Proceedings of the National Academy of Sciences of the United States of America, 89, 12053–12057. doi:10.1073/pnas.89.24.12053.

    Article  CAS  Google Scholar 

  34. Chatelin, S., Wehrle, R., Mercier, P., Morello, D., Sotelo, C., & Weber, M. J. (2001). Neuronal promoter of human aromatic l-amino acid decarboxylase gene directs transgene expression to the adult floor plate and aminergic nuclei induced by the isthmus. Brain Research Molecular Brain Research, 97, 149–160. doi:10.1016/S0169-328X(01)00318-7.

    Article  CAS  Google Scholar 

  35. Jahng, J. W., Wessel, T. C., Houpt, T. A., Son, J. H., & Joh, T. H. (1996). Alternate promoters in the rat aromatic l-amino acid decarboxylase gene for neuronal and nonneuronal expression: An in situ hybridization study. Journal of Neurochemistry, 66, 14–19.

    Article  CAS  Google Scholar 

  36. Aguanno, A., Lee, M. R., Marden, C. M., Rattray, M., Gault, A., & Albert, V. R. (1995). Analysis of the neuronal promoter of the rat aromatic l-amino acid decarboxylase gene. Journal of Neurochemistry, 65, 1944–1954.

    CAS  Google Scholar 

  37. Sumi-Ichinose, C., Hasegawa, S., Ichinose, H., Sawada, H., Kobayashi, K., Sakai, M., et al. (1995). Analysis of the alternative promoters that regulate tissue-specific expression of human aromatic l-amino acid decarboxylase. Journal of Neurochemistry, 64, 514–524.

    CAS  Google Scholar 

  38. Visel, A., Thaller, C., & Eichele, G. (2004). GenePaint org: An atlas of gene expression patterns in the mouse embryo. Nucleic Acids Research, 32, D552–D556. doi:10.1093/nar/gkh029.

    Article  CAS  Google Scholar 

  39. Odom, D. T., Dowell, R. D., Jacobsen, E. S., Gordon, W., Danford, T. W., MacIsaac, K. D., et al. (2007). Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nature Genetics, 39, 730–732. doi:10.1038/ng2047.

    Article  CAS  Google Scholar 

  40. Ason, B., Darnell, D. K., Wittbrodt, B., Berezikov, E., Kloosterman, W. P., Wittbrodt, J., et al. (2006). Differences in vertebrate microRNA expression. Proceedings of the National Academy of Sciences of the United States of America, 103, 14385–14389. doi:10.1073/pnas.0603529103.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

I would like to thank Yuji Ishikawa for providing Hd-rR and Yuko Wakamatsu for providing SeeThrough via the National BioResource Project (http://www.nbrp.jp/). I also thank Yoriko Jyosaki, Takako Iwanaga, and Kaoru Ogata for excellent assistance in maintaining the fish. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (#18650095, K.E.F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro E. Fujimori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fujimori, K.E. Characterization of the Regulatory Region of the Dopa Decarboxylase Gene in Medaka: An in vivo Green Fluorescent Protein Reporter Assay Combined with a Simple TA-Cloning Method. Mol Biotechnol 41, 224–235 (2009). https://doi.org/10.1007/s12033-008-9120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9120-1

Keywords

Navigation