Skip to main content
Log in

Enantioselective Nitrilase from Pseudomonas putida: Cloning, Heterologous Expression, and Bioreactor Studies

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Nitrilases have attracted tremendous attention for the preparation of optically pure carboxylic acids. This article aims to address the production and utilization of a highly enantioselective nitrilase from Pseudomonas putida MTCC 5110 for the hydrolysis of racemic mandelonitrile to (R)-mandelic acid. The nitrilase gene from P. putida was cloned in pET 21b(+) and over-expressed as histidine-tagged protein in Escherichia coli. The histidine-tagged enzyme was purified from crude cell extracts of IPTG-induced cells of E. coli BL21 (DE3). Inducer replacement studies led to the identification of lactose as a suitable and cheap alternative to the costly IPTG. Effects of medium components, various physico-chemical, and process parameters (pH, temperature, aeration, and agitation) for the production of nitrilase by engineered E. coli were optimized and scaled up to a laboratory scale bioreactor (6.6 l). Finally, the recombinant E. coli whole-cells were utilized for the production of (R)-(−)-mandelic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kobayashi, M., & Shimizu, S. (2000). Nitrile hydrolases. Current Opinion Chemical Biology, 4, 95–102.

    Article  CAS  Google Scholar 

  2. Banerjee, A., Sharma, R., & Banerjee, U. C. (2002). The nitrile degrading enzymes: Current status and future prospects. Applied Microbiology and Biotechnology, 60, 33–44.

    Article  CAS  Google Scholar 

  3. Banerjee, A., Kaul, P., Sharma, R., & Banerjee, U. C. (2003). A high-throughput amenable colorimetric assay for enantioselective screening of nitrilase producing microorganisms. Journal of Biomolecular Screening, 8, 559–565.

    Article  CAS  Google Scholar 

  4. Kaul, P., Banerjee, A., & Banerjee, U. C. (2004). Screening for enantioselective nitrilases: Kinetic resolution of racemic mandelonitrile to (R)-(−)-mandelic acid by new bacterial isolates. Tetrahedron: Asymmetry, 15, 207–211.

    Article  CAS  Google Scholar 

  5. Kaul, P., Banerjee, A., & Banerjee, U. C. (2006). Enantioselective nitrile hydrolysis by immobilized whole-cell biocatalyst. Biomacromolecules, 7, 1536–1541.

    Article  CAS  Google Scholar 

  6. Banerjee, A., Kaul, P., & Banerjee, U. C. (2006). Enhancing the catalytic potential of nitrilase from Pseudomonas putida for enantioselective nitrile hydrolysis. Applied Microbiology and Biotechnology, 72, 77–87.

    Article  CAS  Google Scholar 

  7. Osprian, I., Jarret, C., Straussm, U., Kroutil, W., Orru, R., Felfer, U., et al. (1999). Large-scale preparation of a nitrile-hydrolysing biocatalyst: Rhodococcus R 312 (CBS 717.73). Journal of Molecular Catalysis B Enzymatic, 6, 555–560.

    Article  CAS  Google Scholar 

  8. Aav, R., Parve, O., Pehk, T., Claesson, A., & Martin, I. (1999). Tetrahedron: Asymmetry preparation of highly enantiopure stereoisomers of 1-(2, 6-dimethylphenoxy)-2-aminopropane (Mexiletine). Tetrahedron: Asymmetry, 10, 3033–3038.

    Article  CAS  Google Scholar 

  9. Matsugi, M., Fakuda, N., Maguruma, Y., Yamaguchi, T., Minamikawa, J., & Otsuka, S. (2001). Catalytic assymetric oxidation of sulfide with titanium-mandelic acid complex: Practical synthesis of (S)-3-[1-(2-methylphenyl) imidazole-2-ylsulfinyl]-propan-1-ol, a key intermediate of OPC 29030. Tetrahedron, 57, 2739–2744.

    Article  CAS  Google Scholar 

  10. Terreni, M., Pegani, G., Ubiali, D., Fernandez, R., Mateo, C., & Guisán, J. M. (2001). Modulation of penicillin acylase properties via immobilization techniques: One pot chemo-enzymatic synthesis of cephamandole from cephalosporin C. Bioorganic and Medicinal Chemistry Letters, 11, 2429–2432.

    Article  CAS  Google Scholar 

  11. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., et al. (1987). Current protocols in molecular biology (Vol. I). New York: Wiley.

    Google Scholar 

  12. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    CAS  Google Scholar 

  13. Miller, G. L. (1959). Use of dinitrosalicylic reagent for the determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  14. Nagasawa, T., Mauger, J., & Yamada, H. (1990). A novel nitrilase, arylacetonitrilase, of Alcaligenes faecalis JM3, purification and characterization. European Journal of Biochemistry, 194, 765–772.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Anirban Banerjee gratefully acknowledges financial assistance provided by CSIR Govt. of India, and DAAD Fellowship, Sachin Dubey and Praveen Kaul gratefully acknowledge financial assistance provided by DBT and CSIR, Govt. of India. This is NIPER communication number 413.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. C. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, A., Dubey, S., Kaul, P. et al. Enantioselective Nitrilase from Pseudomonas putida: Cloning, Heterologous Expression, and Bioreactor Studies. Mol Biotechnol 41, 35–41 (2009). https://doi.org/10.1007/s12033-008-9094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9094-z

Keywords

Navigation