Skip to main content
Log in

Gene Expression Profiles of Mouse Striatum in Control and Maneb + Paraquat-induced Parkinson’s Disease Phenotype: Validation of Differentially Expressed Energy Metabolizing Transcripts

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The present study was undertaken to investigate the gene expression patterns of the striatum of control and maneb + paraquat-induced Parkinson’s disease (PD) phenotype in mouse to identify the differentially expressed transcripts. The animals were treated with and without maneb (30 mg/kg, i.p.) + paraquat (10 mg/kg, i.p.), twice a week, for 3, 6, and 9 weeks. The RNA was isolated from control and treated mouse striatum and reverse transcribed, and equal quantities of labeled cDNA were mixed and hybridized with mouse 15 k arrays. Comparative transcription patterns showed the time of exposure dependent alteration in the expression of several transcripts associated with various pathways. RT-PCR reconfirmed the differential expression of some energy metabolizing transcripts. The study provides maneb + paraquat-induced differential expression of many transcripts using high-density microarray approach. Few transcripts, which were previously not reported to be associated with neuronal degeneration, were also identified. The results obtained thus suggest that maneb + paraquat induce neurotoxicity in the striatum in a time of exposure dependent manner via multiple pathways and defective energy metabolism could play a critical role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hornykiewicz, O. (1973) Parkinson’s disease: From brain homogenate to treatment. Federation Proceedings, 32, 183–190.

    CAS  Google Scholar 

  2. Marsden, C. D. (1990) Parkinson’s disease. Lancet, 335, 948–952.

    Article  CAS  Google Scholar 

  3. Albin, R. L., Young, A. B., & Penney, J. B. (1989) The functional anatomy of basal ganglia disorders. Trends Neuroscience, 12, 366–375.

    Article  CAS  Google Scholar 

  4. Mason, J. N., Kozall, L. B., & Neve, K. A. (2002) Regulation of dopamine D1 receptor trafficking by protein kinase A-dependent phosphorylation. Molecular Pharmacology, 61, 806–816.

    Article  CAS  Google Scholar 

  5. Singh, M. P., Patel, S., Dikshit, M., & Gupta, Y. K. (2006) Contribution of genomics and proteomics in understanding the role of modifying factors in Parkinson’s disease. Indian Journal of Biochemistry Biophysics, 43, 69–81.

    CAS  Google Scholar 

  6. Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L., & Richardson, R. J. (1998). The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology, 50, 1346–1350.

    CAS  Google Scholar 

  7. Brown, T. P., Rumsby, P. C., Capleton, A. C., Rushton, L., & Levy, L. S. (2006) Pesticides and Parkinson’s disease-is there a link? Environmental Health Perspectives, 114, 156–164.

    Google Scholar 

  8. deRijk, M. C., Breteler, M. M., Graveland G. A., Ott, A., Grobbee, D. F., van der Meche, F. G., & Hofman, A. (1995) Prevalence of Parkinson’s disease in the elderly: The Rotterdam study. Neurology, 45, 2143–2146.

    CAS  Google Scholar 

  9. Lowe, J., McDermott, H., Landon, M., Mayer R. J., & Wilkinson, K. D. (1990) Ubiquitin carboxyl-terminal hydrolase (PGP 9.5) is selectively present in ubiquitinated inclusion bodies characteristic of human neurodegenerative diseases. Journal of Pathology, 161, 153–160.

    Article  CAS  Google Scholar 

  10. Galter, D., Westerlund, M., Carmine, A., Lindqvist, E., Sydow, O., & Olson, L. (2006) LRRK2 expression linked to dopamine-innervated areas. Annals of Neurology, 59, 714–719.

    Article  CAS  Google Scholar 

  11. Valente, E. M., Bentivoglio, A. R., Dixon, P. H., Ferraris, A., Ialongo, T., Frontali, M., Albanese, A., & Wood, N. W. (2001) Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. American Journal of Human Genetics, 68, 895–900.

    Article  CAS  Google Scholar 

  12. Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., & Shimizu, N. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 605–608.

    Article  CAS  Google Scholar 

  13. Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997) Alpha-synuclein in Lewy bodies. Nature, 388, 839–840.

    Article  CAS  Google Scholar 

  14. Bonifati, V., Rizzu, P., van Baren, M. J., Schaap, O., Breedveld, G. J., Krieger, E., Dekker, M. C., Squitieri, F., Ibanez, P., Joosse, M. van Dongen, J. W., Vanacore, N., van Swieten J. C., Brice, A., Meco, G., van Duijn, C. M., Oostra, B. A., & Heutink, P. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 299, 256–259.

    Article  CAS  Google Scholar 

  15. Patel, S., Singh, V., Kumar, A., Gupta, Y. K., & Singh, M. P. (2006) Status of antioxidant defense system and expression of toxicant responsive genes in striatum of maneb-and paraquat-induced Parkinson’s disease phenotype in mouse: Mechanism of neurodegeneration. Brain Research, 1081, 9–18.

    Article  CAS  Google Scholar 

  16. Patel, S., Sinha, A., & Singh, M. P. (2007) Identification of differentially expressed proteins in striatum of maneb-and paraquat-induced Parkinson’s disease phenotype in mouse. Neurotoxicology and Teratology, 29, 578–585.

    Article  CAS  Google Scholar 

  17. Schapira, A. H., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., & Marsden, C. D. (1990) Mitochondrial complex I deficiency in Parkinson’s disease. Journal of Neurochemistry, 54, 823–827.

    Article  CAS  Google Scholar 

  18. Langston, J. W., Ballard, P. A., Tetrud, J. W., & Irwin, I. (1993) Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979–980.

    Article  Google Scholar 

  19. McCormack, A. L., Atienza, J. G., Johnston, L. C., Andersen, J. K., Vu, S., & Di Monte, D. A. (2005) Role of oxidative stress in paraquat-induced dopaminergic cell degeneration. Journal of Neurochemistry, 93, 1030–1037.

    Article  CAS  Google Scholar 

  20. Thiruchelvam, M., Richfield, E. K., Baggs, R. B., Tank, A. W., & Cory-Slechta, D. A. (2000) The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: Implications for Parkinson’s disease. Journal of Neuroscience, 20, 9207–9214.

    CAS  Google Scholar 

  21. Thiruchelvam, M., McCormack, A., Richfield, E. K., Baggs, R. B., Tank, A. W., Di Monte, D. A., & Cory-Slechta, D. A. (2003) Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson’s disease phenotype. European Journal of Neuroscience, 18, 589–600.

    Article  Google Scholar 

  22. Cory-Slechta, D. A., Thiruchelvam, M., Barlow, B. K., & Richfield, E. K. (2005) Developmental pesticide models of the Parkinson disease phenotype. Environmental Health Perspectives, 113, 1263–1270.

    CAS  Google Scholar 

  23. Chomczynski, P. (1993) A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques, 15, 532–537.

    CAS  Google Scholar 

  24. Filipenko, M. L., Alekseyenko, O. V., Beilina, A. G., Kamynina, T. P., & Kudryavtseva, N. N. (2001) Increase of tyrosine hydroxylase and dopamine transporter mRNA levels in ventral tegmental area of male mice under influence of repeated aggression experience. Molecular Brain Research, 96, 77–81.

    Article  CAS  Google Scholar 

  25. Herzog, B., Cardenas, J., Hall, R. K., Villena, J. A., Budge, P. J., Giguere, V., Granner, D. K., & Kralli, A. (2006) Estrogen-related receptor-α is a repressor of phosphoenolpyruvate carboxy kinase gene transcription. Journal of Biological Chemistry, 281, 99–106.

    Article  CAS  Google Scholar 

  26. Dentin, R., Pegorier, J., Benhamed, F., Foufelle, F., Ferre, P., Fauveau, V., Magnuson, M. A., Girard, J., & Postic, C. (2004) Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. Journal of Biological Chemistry, 279, 20314–20326.

    Article  CAS  Google Scholar 

  27. Shen, X., Zheng, S., Thongboonkerd, V., Xu, M., Pierce, W. M. Jr., Klein, J. B., & Epstein, P. N. (2004) Cardiac mitochondrial damage and biogenesis in a chronic model of type I diabetes. American Journal of Physiology Endocrinology and Metabolism, 287, E896–E905.

    Article  CAS  Google Scholar 

  28. Grange, R. W., Meeson, A., Chin, E., Lau, K. S., Stull, J. T., Shelton, J. M., Williams, R. S., & Garry, D. J. (2001) Functional and molecular adaptations in skeletal muscle of myglobin-mutant mice. American Journal of Physiology Cell Physiology, 281, C1487–1494.

    CAS  Google Scholar 

  29. Fan, Q., Ding, J., Zhang, J., Guan, N., & Deng, J. (2004) Effect of the knockdown of podocin mRNA on nephrin and α-actinin in mouse podocyte. Experimental Biology and Medicine, 229, 964–970.

    CAS  Google Scholar 

  30. Thiruchelvam, M., Richfield, E. K., Goodman, B. M., Baggs, R. B., & Cory-Slechta, D. A. (2002) Developmental exposure to the pesticides paraquat and maneb and the Parkinson’s disease phenotype. Neurotoxicology, 23, 621–633.

    Article  CAS  Google Scholar 

  31. Napolitano, M., Centonze, D., Calce, A., Picconi, B., Spiezia, S., Gulino, A., Bernardi, G., & Calabresi, P. (2002) Experimental parkinsonism modulates multiple genes involved in the transduction of dopaminergic signals in the striatum. Neurobiology of Diseases, 10, 387–395.

    Article  CAS  Google Scholar 

  32. Duke, D. C., Moran, L. B., Kalaitzakis, M. E., Deprez, M., Dexter, D. T., Pearce, R. K., & Graeber, M. B. (2006) Transcriptome analysis reveals link between proteosomal and mitochondrial pathways in Parkinsons disease. Neurogenetics, 7, 139–148.

    Article  CAS  Google Scholar 

  33. Castello, P. R., Drechsel, D. A., & Patel, M. (2007) Mitochondria are a major source of paraquat induced reactive oxygen species production in the brain. Journal of Biological Chemistry, 282, 14186–14193.

    Article  CAS  Google Scholar 

  34. Stack, E. C., & Ferrante, R. J. (2007) Huntington’s disease: Progress and potential in the field. Expert Opinion on Investigational Drugs, 16, 1933–53.

    Article  CAS  Google Scholar 

  35. Klein, C., & Schlossmacher, M. G. (2006) The genetics of Parkinson disease: Implications for neurological care. Nature Clinical Practice Neurology, 2, 136–146.

    Article  CAS  Google Scholar 

  36. Choi, P., Ostrerova-Golts, N., Sparkman, D., Cochran, E., Lee, J. M., & Wolozin, B. (2000). Parkin is metabolized by the ubiquitin/proteosome system. Neuroreport, 11, 2635–2638.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank the Council of Scientific and Industrial Research (CSIR), New Delhi, and University Grant Commission, New Delhi, for providing research fellowship to Suman Patel and Seema Singh, respectively. The authors also thank Department of Biotechnology (DBT), India, for providing financial support for the study. The ITRC communication number of this manuscript is 2580.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra Pratap Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S., Singh, K., Singh, S. et al. Gene Expression Profiles of Mouse Striatum in Control and Maneb + Paraquat-induced Parkinson’s Disease Phenotype: Validation of Differentially Expressed Energy Metabolizing Transcripts. Mol Biotechnol 40, 59–68 (2008). https://doi.org/10.1007/s12033-008-9060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9060-9

Keywords

Navigation