Skip to main content
Log in

Evidence of the Importance of the Met115 for Bacillus thuringiensis subsp. israelensis Cyt1Aa Protein Cytolytic Activity in Escherichia coli

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Cyt1Aa is a cytolytic toxin, found together with the delta-endotoxins in Bacillus thuringiensis subsp. israelensis parasporal insecticidal crystals. The latter are used as an environmental friendly insecticide against mosquitoes and black flies. Contrary to Cry delta-endotoxin, the mode of action of Cyt1Aa is not completely understood. In the absence of direct structural data, a novel mutated cyt1Aa gene was used to obtain indirect informations on Cyt1Aa conformation changes in the lipid membrane environment. A mutated cyt1Aa gene named cyt1A97 has been isolated from a B. thuringiensis israelensis strain named BUPM97. The nucleotide sequence predicted a protein of 249 amino acids residues with a calculated molecular mass of 27 kDa. Both nucleotide and amino acid sequences similarity analysis revealed that cyt1A97 presents one amino acid different from the native cyt1Aa gene. This mutation was located in the helix α C corresponding to a substitution of Met115 by a Thr. The heterologous expression of the cyt1A97 and another cyt1Aa-type gene called cyt1A98, not affected by such mutation used as control, was performed in Escherichia coli. It revealed that the mutated Cyt1A97 protein was over produced as inclusion bodies showing a very weak toxicity to E. coli contrarily to Cyt1A98 that stopped E. coli growth. Hence, hydrophobic residue Met at position 115 of Cyt1Aa should play a very important role for the maintenance of the structure and cytolytic functions of Cyt1Aa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

B :

Bacillus

E :

Escherichia

PCR:

Polymerase Chain Reaction

Cyt:

Cytolytic toxin

LB:

Luria-Bertani medium

References

  1. Promdonkoy, B., Chewawiwat, N., Tanapongpipat, S., Luxananil, P., & Panyim, S. (2003). Cloning and characterization of a cytolytic and mosquito larvicidal d-endotoxin from Bacillus thuringiensis subsp. darmstadiensis. Current Microbiology, 46, 94–98.

    Article  PubMed  CAS  Google Scholar 

  2. Cheong, H., & Gill, S. S. (1997). Cloning and characterization of a cytolytic and mosquitocidal d-endotoxin from Bacillus thuringiensis subsp. jegathesan. Applied and Environmental Microbiology, 63, 3254–3260.

    PubMed  CAS  Google Scholar 

  3. Juarez-Perez, V., Guerchicoff, A., Rubinstein, C., & Delecluse, A. (2002). Characterization of Cyt2Bc toxin from Bacillus thuringiensis subsp. medellin. Applied and Environmental Microbiology, 68, 1228–1231.

    Article  PubMed  CAS  Google Scholar 

  4. Drobniewski, F. A., & Ellar, D. J. (1988) Investigation of the membrane lesion induced in vitro by two mosquitocidal delta-endotoxins of Bacillus thuringiensis. Current Microbiology, 16, 195–199.

    Article  CAS  Google Scholar 

  5. Koni, P. A., & Ellar, D. J. (1994) Biochemical characterisation of Bacillus thuringiensis cytolytic delta-endotoxins. Microbiology, 140, 1869–1880.

    PubMed  CAS  Google Scholar 

  6. Schnepf, H. E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R., & Dean, D. H. (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62, 775–806.

    PubMed  CAS  Google Scholar 

  7. Crickmore, N., Bone, E. J., Williams, J. A., & Ellar, D. J (1995). Contribution of the individual components of the δ-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp. israelensis. FEMS Microbiology Letters, 131, 249–254.

    CAS  Google Scholar 

  8. Wu, D., & Federici, B. A. (1993) A 20-kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis. Journal of Bacteriology, 175, 5276–5280.

    PubMed  CAS  Google Scholar 

  9. Ibarra, J., & Federici, B. A. (1986). Isolation of a relatively non-toxic 65-kilodalton protein inclusion from the parasporal body of Bacillus thuringiensis subsp. israelensis. Journal of Bacteriology, 165, 527–533.

    PubMed  CAS  Google Scholar 

  10. Wu, D., & Chang, F. N. (1985). Synergism in mosquitocidal activity of 26 and 65 kDa proteins from Bacillus thuringiensis subsp. israelensis crystal. FEBS Letters, 190, 232–236.

    Article  CAS  Google Scholar 

  11. Georghiou, G. P., & Wirth, M. C. (1997). Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Applied and Environmental Microbiology, 63, 1095–1101.

    PubMed  CAS  Google Scholar 

  12. Pérez, C., Fernandez, L. E., Sun, J., Folch, J. L., Gill, S. S, Sorberon, M., & Bravo, A. (2005). Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. Proceedings of the National Academy of Sciences of the United States of America, 102, 18303–18308.

    Article  PubMed  CAS  Google Scholar 

  13. Wirth, M. C., & Georghiou, G. P. (1997). Cross-resistance among CryIV toxins of Bacillus thuringiensis subsp. israelensis in Culex quinquefasciatus (Diptera: Culicidae). Journal of Economic Entomology, 90, 1471–1477.

    CAS  Google Scholar 

  14. Wirth, M. C., Georghiou, G. P., & Federici, B. A. (1997). CytA enables CryIV endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito, Culex quinquefasciatus. Proceedings of the National Academy of Sciences of the United States of America, 94, 10536–10540.

    Article  PubMed  CAS  Google Scholar 

  15. Douek, J., Einav, M., & Zaritsky, A. (1992). Sensitivity to plating of Escherichia coli cells expressing the cytA gene from Bacillus thuringiensis var. israelensis. Molecular & General Genetics, 232, 162–165.

    Article  CAS  Google Scholar 

  16. Ballesta, J. P., Cundliffe, E., Daniels, M. J., Silverstein, J. L., Susskind, M. M., & Schaechter, M. (1972). Some unique properties of the deoxyribonucleic acid-bearing portion of the bacterial membrane. Journal of Bacteriology, 112, 195–199.

    PubMed  CAS  Google Scholar 

  17. Thomas, W. E., & Ellar, D. J. (1983). Bacillus thuringiensis var. israelensis crystal delta- endotoxin: Effects on insect and mammalian cells in vitro and in vivo. Journal of Cell Science, 60, 181–197.

    PubMed  CAS  Google Scholar 

  18. Promdonkoy, B., & Ellar, D. J. (2003). Investigation of the pore forming mechanism of a cytolytic d-endotoxin from Bacillus thuringiensis. The Biochemical Journal, 374, 255–259.

    Article  PubMed  CAS  Google Scholar 

  19. Manceva, S. D., Pusztai-Carey, M., Russo, P. S., & Butko, P. (2005). A detergent-like mechanism of action of the cytolytic toxin Cyt1A from Bacillus thuringiensis var. israelensis. Biochemistry, 44, 589–597.

    Article  PubMed  CAS  Google Scholar 

  20. Li, J., Koni, P. A., & Ellar, D. J. (1996). Structure of the mosquitocidal delta-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. Journal of Molecular Biology, 257, 129–152.

    Article  PubMed  CAS  Google Scholar 

  21. Butko, P. (2003). Cytolytic toxin Cyt1A and its mechanism of membrane damage: Data and hypotheses. Applied and Environmental Microbiology, 69, 2415–2422.

    Article  PubMed  CAS  Google Scholar 

  22. Gazit, E., & Shai, Y. (1993). Structural characterization, membrane interaction, and specific assembly within phospholipids membranes of hydrophobic segments from Bacillus thuringiensis var. israelensis cytolytic toxin. Biochemistry, 32, 12363–12371.

    Article  PubMed  CAS  Google Scholar 

  23. Jaoua, S., Zouari, N., Tounsi, S., & Ellouz, R. (1996). Study of the δ-endotoxins produced by three recently isolated strains of Bacillus thuringiensis. FEMS Microbiology Letters, 145, 349–354.

    CAS  Google Scholar 

  24. Zghal, R. Z., & Jaoua, S. (2006). Evidence of DNA rearrangements in the 128-kilobase pBtoxis plasmid of Bacillus thuringiensis israelensis. Molecular Biotechnology, 33, 191–198.

    Article  PubMed  CAS  Google Scholar 

  25. Guzman, L. M., Belin, D., Carson, M. J., & Beckwith, J. (1995). Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. Journal of Bacteriology, 177, 4121–4130.

    PubMed  CAS  Google Scholar 

  26. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning. A laboratory manual, 2nd edn. Cold Spring Harbor NY: Cold Spring Harbor Laboratory.

    Google Scholar 

  27. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). The ClustalW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.

    Article  PubMed  CAS  Google Scholar 

  28. Schwede, T., Kopp, J., Guex, N., & Peitsch, M. C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31, 3381–3385.

    Article  PubMed  CAS  Google Scholar 

  29. DeLano, W. L. (2002) The PyMOL Molecular Graphics System on World Wide Web http://www.pymol.org.

  30. Chothia, C., & Lesk, A. M. (1986). The relation between the divergence of sequence and structure in proteins. The EMBO Journal, 5, 823–826.

    PubMed  CAS  Google Scholar 

  31. Koni, P. A., & Ellar, D. J. (1993). Cloning and characterization of a novel Bacillus thuringiensis cytolytic delta-endotoxin. Journal of Molecular Biology, 229, 319–327.

    Article  PubMed  CAS  Google Scholar 

  32. Szabo, E., Murvai, J., Fabian, P., Fabian, F., Hollosi, M., Kajtar, J., Buzas, Z., Sajgo, M., Pongor, S., & Asboth, B. (1993). Is an amphiphilic region responsible for the haemolytic activity of Bacillus thuringiensis toxin? International Journal of Peptide and Protein Research, 42, 527–532.

    Article  PubMed  CAS  Google Scholar 

  33. Zghal, R. Z., Tounsi, S., & Jaoua, S. (2006). Characterization of a cry4Ba-type gene of Bacillus thuringiensis israelensis and evidence of the synergistic larvicidal activity of its encoded protein with Cry2A delta-endotoxin of B. thuringiensis kurstaki on Culex pipiens. Biotechnology and Applied Biochemistry, 44, 19–25.

    Article  PubMed  CAS  Google Scholar 

  34. Butko, P., Huang, F., Pusztai-Carey, M., & Surewicz, W. K. (1996) Membrane permeabilization induced by cytolytic delta-endotoxin CytA from Bacillus thuringiensis var. israelensis. Bichemistry, 35, 11355–11360.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Najeh Belguith-Ben Hassen for her technical assistance. This work was supported by grants from the Tunisian Ministère de l’Enseignement Supérieur de la Recherche Scientifique et de la Technologie et du développement des compétences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Jaoua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zghal, R.Z., Trigui, H., Ali, M.B. et al. Evidence of the Importance of the Met115 for Bacillus thuringiensis subsp. israelensis Cyt1Aa Protein Cytolytic Activity in Escherichia coli . Mol Biotechnol 38, 121–127 (2008). https://doi.org/10.1007/s12033-007-9015-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-9015-6

Keywords

Navigation