Skip to main content
Log in

Channel Glass-based Detection of Human Short Insertion/Deletion Polymorphisms by Tandem Hybridization

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The development and critical evaluation of new technologies for identifying genetic polymorphisms will rapidly accelerate the discovery and diagnosis of disease-related genes. We report a novel way for distinguishing a new class of human DNA polymorphisms, short insertion/deletion polymorphisms (indels). A sensor with cylindrical pores named channel glass in combination with tandem hybridization, which uses a 5′-fluorescent labeled stacking probe and microarray-based short allele-specific oligonucleotide (capture probe) was investigated. This methodology allows indels to be detected individually and rapidly with small quantities of target DNA. This establishes a reliable quantitative test. Approaches for simultaneously hybridizing different targets to arrayed probes, designed to detect various indels in parallel, were examined. Five markers were consistently detected in a single hybridization. Possible factors impeding the hybridization reaction process are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramsay, G. (1998) DNA chips: State-of-the art. Nature Biotechnology, 16, 40–44.

    Article  PubMed  CAS  Google Scholar 

  2. Dearlove, A. M. (2002). High throughput genotyping technologies. Briefings in Functional Genomic & Proteomics, 1, 139–150.

    Article  CAS  Google Scholar 

  3. Matsuzaki1, H., Loi, H., Dong, S., Tsai, Y., Fang, J., Law, J., Di, X., Liu, W., Yang, G., Liu, G., Huang, J., Kennedy, G. C., Ryder, T. B., Marcus, G. A., Sean Walsh, P. S., Shriver, M. D., Puck, J. P., Jones, K. W., & Mei1, R. (2004). Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Research, 14, 414–425.

    Article  CAS  Google Scholar 

  4. Stephens, M., Sloan, J. S., Robertson, P. D., Scheet, P., & Nickerson, D. A. (2006). Automating sequence-based detection and genotyping of SNPs from diploid samples. Nature Genetics, 38, 375–381.

    Article  PubMed  CAS  Google Scholar 

  5. Drmanac, S., Kita, D., Labat, I., Hauser, B., Schmidt, C., & Burczak, J. D. (1998). Accurate sequencing by hybridization for DNA diagnostics and individual genomics. Nature Biotechnology, 16, 54–58.

    Article  PubMed  CAS  Google Scholar 

  6. Hinds, D. A., Stuve, L. L., Nilsen, G. B., Halperin, E., Eskin, E., Ballinger, D. G., Frazer, K. A., & Cox, D.R. (2005). Whole-genome patterns of common DNA variation in three human populations. Science, 307, 1072–1079.

    Article  PubMed  CAS  Google Scholar 

  7. Pennisi, E. (2001). The human genome. Science, 291, 1177–1180.

    Article  PubMed  CAS  Google Scholar 

  8. Weber, J. L., David, D., Heil, J., Fan, Y., Zhao, C., & Marth, G. (2002). Human diallelic insertion/deletion polymorphisms. American Journal of Human Genetics, 71, 854–862.

    Article  PubMed  Google Scholar 

  9. Nickerson, D. A., Whitehurst, C., Boysen, C., Charmley, P., Kaiser, R., & Hood, L. (1992). Identification of clusters of bialleic polymorphic sequence-tagged sites (pSTSs) that generate highly informative and automatable markers for genetic linkage mapping. Genomics, 12, 377–387.

    Article  PubMed  CAS  Google Scholar 

  10. Kruglyak, L. (1997). What is significant in whole-genome linkage disequilibrium studies? American Journal of Human Genetics, 61, 810–812.

    Article  PubMed  CAS  Google Scholar 

  11. Lupski, J. R., Roth, J. R., & Weinstock, G. M. (1996). Chromosomal duplicationsin bacteria, fruit flies, and humans. American Journal of Human Genetics, 58, 21–27.

    PubMed  CAS  Google Scholar 

  12. Cooper, D. N., & Krawczak, M. (1991). Mechanisms of insertional mutagenesis in human genes causing genetic disease. Human Genetics, 87, 409–415.

    PubMed  CAS  Google Scholar 

  13. Guo, Z., Guifoyle, R. A., Thiel, A. J., Wang, R., & Smith, L. M. (1994). Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Research, 22, 327–333.

    Article  Google Scholar 

  14. Proudnikov, D., Timofeev, E., & Mirzabekov, A. (1998). Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA oligonucleotide microchips. Analytical Biochemistry, 259, 34–41.

    Article  PubMed  CAS  Google Scholar 

  15. Benoit, V., Steel, A., Torres, M., Yu, Y.-Y., Yang, H., & Cooper, J. (2001). Evaluation of three-dimensional microchannel glass biochips for multiplex nucleic acid fluorescence hybridization assays. Analytical Chemistry, 73, 2412–2420.

    Article  PubMed  CAS  Google Scholar 

  16. Pirrung, M. C. (2002). How to make a DNA chip. Angewandte Chemie International Edition, 41, 1276–1289.

    Article  CAS  Google Scholar 

  17. Cheek, J., Steel, A. B., Torres, M. P., Yu, Y.-Y., & Yang, H. (2001). Chemiluminescence detection for hyrbidization assays on the flow-thru chip, a three-dimensional microchannel biochip. Analytical Chemistry, 73, 5777–5783.

    Article  PubMed  CAS  Google Scholar 

  18. Bessueille, F., Dugas, V., Vikulov, V., Cloarec, J. P., Souteyrand, E., & Martin, J. R. (2005). Assessment of porous silicon substrate for well-characterised sensitive DNA chip implement. Biosensors & Bioelectronics, 21, 908–916.

    Article  CAS  Google Scholar 

  19. Wu, Y., de Kievit, P., Vahlkamp, L., Pijnenburg, D., Smit, M., Dankers, M., Melchers, D., Stax, M., Boender, P. J., Ingham, C., Bastiaensen, N., de Wijn, R., van Alewijk, D., van Damme, H., Raap, A. K, Chan, A. B., & van Beuningen R. (2004). Quantitative assessment of a novel flow-through porous microarray for the rapid analysis of gene expression profiles. Nucleic Acids Research, 32, e123.

    Article  PubMed  CAS  Google Scholar 

  20. Liu, Y., & Rauch, C. B. (2003). DNA probe attachment on plastic surfaces and microfluidic hybridization array channel devices with sample oscillation. Analytical Biochemistry, 317, 76–84.

    Article  PubMed  CAS  Google Scholar 

  21. Kirov, G., Nikolov, I., Georgieva, L., Moskvina, L., Owen, M. J., & O’Donovan, M. C. (2006). Pooled DNA genotyping on affymetrix SNP genotyping arrays. BMC Genomics, 7, 27.

    Article  PubMed  CAS  Google Scholar 

  22. Beattie, K. L., Beattie, W.G., Meng, L., Turner, S., Bishop, C., Dao, D., Coral, R., Smith, D., & McIntyre, P. (1995). Advances in genosensor research. Clinical Chemistry, 41, 700–706.

    PubMed  CAS  Google Scholar 

  23. Doktycz, M. J., & Beattie, K. L. (1997). Genosensors and model hybridization studies. In A. Beugelsdiik (Ed.), Automation technologies for genome characterization (pp. 205–225). New York: John Wiley and Sons.

    Google Scholar 

  24. Matsumoto, F., Nishio, K., & Masuda, H. (2004). Flow-through-type DNA array based on ideally ordered anodic porous alumina substrate. Advanced Materials Published Online: 17 December. doi: 10.1002/adma.200400360.

  25. Maldonado, R., Espinosa, M., Loyola, P., Beattie, W. G., & Beattie, K. L. (1999). Mutation detection by stacking hybridization on genosensor arrays. Molecular Biotechnology, 11, 13–25.

    Article  Google Scholar 

  26. Maldonado, R., & Beattie, K. L. (2001). Analysis of nucleic acids by tandem hybridization on oligonucleotide microarrays. In J. B. Rampal (Ed.), DNA arrays. Methods and protocols (pp. 157–171). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  27. Maldonado-Rodríguez, R., Espinosa-Lara, M., Barrera-León, O., Colin-Tovar, C., González-Yebra, B., Salcedo-Vargas, M., Santiago-Hernández, J. C., Méndez-Tenorio, A., & Beattie, K. L. (2003). Detection of mutations in RET proto-oncogene codon 634 through double tandem hybridization. Molecular Biotechnology, 25, 13–29.

    Article  Google Scholar 

  28. Rangel-López, A., Maldonado-Rodríguez, R., Salcedo-Vargas, M., Espinosa-Lara, J. M., Méndez-Tenorio, A., & Beattie, K. L. (2005). Low density DNA microarray for detection of most frequent TP53 missense point mutations. BMC Biotechnology, 5, 8.

    Article  PubMed  CAS  Google Scholar 

  29. Sambrook, J., Fritsh, E. F., & Maniatis, T. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  30. Hicks, J. S., Harker, B. W., Beattie, K. L., & Doktycz, M. J. (2001). Modification of an automated liquid-handling system for reagent-jet, nanoliter-level dispensing. Biotechniques, 30, 878–885.

    PubMed  CAS  Google Scholar 

  31. Weber, J. L., & May, P. E. (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. American Journal of Human Genetics, 44, 388–396.

    PubMed  CAS  Google Scholar 

  32. Betanzos-Cabrera, G., Harker, B. W., Doktycz, M. J., Weber, J. L., & Beattie, K. L. (2007). A comparison of hybridization efficiency between flat glass and channel glass solid supports. Molecular Biotechnology. doi: 10.1007/s12033-007-9001-z.

  33. Dietrich, W. F., Weber, J. L., Kwok, P.-Y., & Nickerson, D. A. (1998). Isolation and analysis of DNA polymorphisms. In R. Myers et al. (Eds.), Genome analysis: A laboratory manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  34. Twyman, R. M., & Primrose, S. B. (2003). Techniques patents for SNP genotyping. Pharmacogenomics, 4, 67–79.

    Article  PubMed  CAS  Google Scholar 

  35. Iwasaki, H., Ezura, Y., Ishida, R., Kajita, M., Kodaira, M., Knight, J., Daniel, S., Shi, M., & Emi, M. (2002). Accuracy of genotyping for single nucleotide polymorphisms by a microarray-based single nucleotide polymorphism typing method involving hybridization of short allele-specific oligonucleotides. DNA Research, 30, 59–62.

    Article  Google Scholar 

  36. Wirtenberger, M., Hemminki, K., Chen, B., & Burwinkel, B. (2005). SNP microarray analysis for genome-wide detection of crossover regions. Human Genetics, 117, 389–397.

    Article  PubMed  CAS  Google Scholar 

  37. Allawi, H. T., & SantaLucia, J. (1998). Nearest-neighbor thermodynamics of internal A–C mismatches in DNA. Sequence dependence and pH effects. Biochemistry, 37, 9435–9444.

    Article  PubMed  CAS  Google Scholar 

  38. Doktycz, M. J., Morris, M. D., Dormady, S. J, Beattie, K. L., & Jacobson, K. B. (1995). Optical melting of 128 octamer DNA duplexes. Effects of base pair location and nearest neighbors on thermal stability. The Journal of Biological Chemistry, 270, 8439–8445.

    Article  PubMed  CAS  Google Scholar 

  39. Pyshnyi, D. V., Pyshnaya, I. A., Levina, A. S., Goldberg, E. L., Zarytova, V. F., Knorre, D. G., & Ivanova, E. M. (2001). Thermodynamic analysis of stacking hybridization of oligonucleotides with DNA template. Journal of Biomolecular Structure Dynamics, 19, 555–570.

    PubMed  CAS  Google Scholar 

  40. Southern, E., Mir, K., & Shchepinov, M. (1999). Molecular interactions on microarrays. Nature Genetics, 21, S5–S9.

    Article  Google Scholar 

  41. Lane, M. J., Paner, T., Kashin, I., Faldasz, B. D., Li, B., Gallo, F. J., & Benight, A. S. (1997). The thermodynamic advantage of DNA oligonucleotide “stacking hybridization” reactions: energetics of a DNA nick. Nucleic Acids Research, 25, 611–616.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by PROMEP/103.5/03/1130, Fondo Sectorial Área de Ciencia Básica SEP-CONACYT 2004-C01-46537, PA144B-2007 and by NIH grant R01 HL62681-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Betanzos-Cabrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betanzos-Cabrera, G., Harker, B.W., Doktycz, M.J. et al. Channel Glass-based Detection of Human Short Insertion/Deletion Polymorphisms by Tandem Hybridization. Mol Biotechnol 38, 145–153 (2008). https://doi.org/10.1007/s12033-007-9004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-9004-9

Keywords

Navigation