Skip to main content
Log in

A Comparison of Hybridization Efficiency between Flat Glass and Channel Glass Solid Supports

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Two different solid supports, channel glass and flat glass, were compared for their affect on the sensitivity and efficiency of DNA hybridization reactions. Both solid supports were tested using a set of arrayed, synthetic oligonucleotides that are designed to detect short insertion/deletion polymorphisms (SIDPs). A total of 13 different human SIDPs were chosen for analysis. Capture probes, designed for this test set, were covalently immobilized on substrates. Hybridization efficiency was assessed using fluorescently labeled stacking probes which were preannealed to the target and then hybridized to the support-bound oligonucleotide array; the hybridization pattern was detected by fluorescence imaging. It was found that structural features of nucleic acid capture probes tethered to a solid support and the molecular basis of their interaction with targets in solution have direct implications on the hybridization process. Our results demonstrate that channel glass has a number of practical advantages over flat glass including higher sensitivity and a faster hybridization rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Benoit, V., Steel, A., Torres, M., Yu, Y.-Y., Yang, H., & Cooper, J. (2001). Evaluation of three-dimensional microchannel glass biochips for multiplex nucleic acid fluorescence hybridization assays. Analytical Chemistry, 73, 2412–2420.

    Article  PubMed  CAS  Google Scholar 

  2. Proudnikov, D., Timofeev, E., & Mirzabekov, A. (1998). Immobilization of DNA in polyacrylamide gel for the manufacture of DNA and DNA oligonucleotide microchips. Analytical Biochemistry, 259, 34–41.

    Article  PubMed  CAS  Google Scholar 

  3. Pirrung, M. C. (2002). How to make a DNA chip. Angewandte Chemie-International Edition, 41, 1276–1289.

    Article  CAS  Google Scholar 

  4. Liu, Y., & Rauch, C. B. (2003). DNA probe attachment on plastic surfaces and microfluidic hybridization array channel devices with sample oscillation. Analytical Biochemistry, 317, 76–84.

    Article  PubMed  CAS  Google Scholar 

  5. Guo, Z., Guifoyle, R. A., Thiel, A. J., Wang, R., & Smith, L. M. (1994). Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Research, 22, 327–333.

    Article  Google Scholar 

  6. Cheek, J., Steel, A. B., Torres, M. P., Yu, Y.-Y., & Yang, H. (2001). Chemiluminescence detection for hyrbidization assays on the flow-thru chip, a three-dimensional microchannel biochip. Analytical Chemistry, 73, 5777–5783.

    Article  PubMed  CAS  Google Scholar 

  7. Kirov, G., Nikolov, I., Georgieva, L., Moskvina, L., Owen, M. J., & O’Donovan, M. C. (2006). Pooled DNA genotyping on Affymetrix SNP genotyping arrays. BMC Genomics, 7, 27.

    Article  PubMed  CAS  Google Scholar 

  8. Ramsay, G. (1998) DNA chips: state-of-the art. Nature Biotechnology, 16, 40–44.

    Article  PubMed  CAS  Google Scholar 

  9. Twyman, R. M., & Primrose, S. B. (2003). Techniques patents for SNP genotyping. Pharmacogenomics, 4, 67–79.

    Article  PubMed  CAS  Google Scholar 

  10. Beattie, K. L., & Frost, J. D. (1992). Porous wafer for segmented synthesis of biopolymers. U.S. Patent #5,175,209.

  11. Beattie, K. L. (1997). Analytical microsystems: Emerging technologies for environmental biomonitoring. In G. S. Sayler, J. Sanseverino, & K. L. Davis (Eds.), Biotechnology in the sustainable environment (pp. 249–260). New York: Plenum Press.

    Google Scholar 

  12. Doktycz, M. J., & Beattie, K. L. (1997). Genosensors, & model hybridization studies. In A. Beugelsdiik (Ed.), Automation technologies for genome characterization (pp. 205–225). New York: John Wiley and Sons.

    Google Scholar 

  13. Beattie, K. L., Beattie, W.G., Meng, L., Turner, S., Bishop, C., Dao, D., Coral, R., Smith, D., & McIntyre, P. (1995). Advances in genosensors research. Clinical Chemistry, 41, 700–706.

    PubMed  CAS  Google Scholar 

  14. Bessueille, F., Dugas, V., Vikulov, V., Cloarec, J. P., Souteyrand, E., & Martin, J. R. (2005). Assessment of porous silicon substrate for well-characterised sensitive DNA chip implement. Biosensors & Bioelectronics, 21, 908–916.

    Article  CAS  Google Scholar 

  15. Toegl, A., Kirchner, R., Gauer, C., & Wixforth, A. (2003). Enhancing results of Microarray hybridizations through microagitation. Journal of Biomolecular Techniques, 14, 197–204.

    PubMed  Google Scholar 

  16. Matsumoto, F., Nishio, K., & Masuda, H. (2004). Flow-Through-Type DNA array based on Ideally ordered anodic porous alumina substrate. Advanced Materials, Published Online: 17 December. DOI: 10.1002/adma.200400360.

  17. Muggerud, A. A., Johnsen, H., Barnes, D. A., Steel, A., Lonning, P. E., Naume, B., Sorlie, T., & Borresen-Dale, A.-L. (2006). Evaluation of MtriGenix custom 4D arrays applied for detection of breast cancer subtypes. BMC Cancer, 6, 59.

    Article  PubMed  CAS  Google Scholar 

  18. Wu, Y., de Kievit, P., Vahlkamp, L., Pijnenburg, D., Smit, M., Dankers, M., Melchers, D., Stax, M., Boender, P. J., Ingham, C., Bastiaensen, N., de Wijn, R., van Alewijk, D., van Damme, H., Raap, A. K, Chan, A. B., & van Beuningen R. (2004). Quantitative assessment of a novel flow-through porous microarray for the rapid analysis of gene expression profiles. Nucleic Acids Research, 32, e123.

    Article  PubMed  CAS  Google Scholar 

  19. Peytavi, R., Raymond, F. R., Gagne, D., Picard, F. J., Jia, G., Zoval, J., Madou, M., Boissinot, K., Boissinot, M., Bissonnette, L., Ouellette, M., & Bergeron, M. G. (2005). Microfluidic device for rapid (<15 min) automated microarray hybridization. Clinical Chemistry, 51, 1836–1844.

    Article  PubMed  CAS  Google Scholar 

  20. Wei, C. W., Cheng, J. Y., Huang, C. T., Yen, M. H., & Young, T. H. (2005). Using a microfluidic device for 1 μl DNA microarray hybridization in 500 s. Nucleic Acids Research, 33(8), e78.

    Article  PubMed  Google Scholar 

  21. Weber, J. L., David, D., Heil, J., Fan, Y., Zhao, C., & Marth, G. (2002). Human diallelic insertion/deletion polymorphisms. American Journal of Human Genetics, 71, 854–862.

    Article  PubMed  Google Scholar 

  22. Sambrook, J., Fritsh, E. F., & Maniatis, T. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  23. Weber, J. L., & May, P. E. (1989). Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. American Journal of Human Genetics, 44, 388–396.

    PubMed  CAS  Google Scholar 

  24. Hicks, J. S., Harker, B. W., Beattie, K. L., & Doktycz, M. J. (2001). Modification of an automated liquid-handling system for reagent-jet, nanoliter-level dispensing. Biotechniques, 30, 878–885.

    PubMed  CAS  Google Scholar 

  25. Maldonado, R., Espinosa, M., Calixto, A., Beattie, W. G., & Beattie, K. L. (1999). Hybridization of glass-tethered oligonucleotide probes to target strands preannealed with labeled auxiliary oligonucleotides. Molecuar Biotechnology, 11, 1–12.

    Google Scholar 

  26. Maldonado, R., & Beattie, K. L. (2001). Analysis of nucleic acids by tandem hybridization on oligonucleotide microarrays. In J. B. Rampal (Ed.), DNA arrays. Methods and protocols (pp. 157–171). Totowa, NJ: Humana Press.

    Chapter  Google Scholar 

  27. Maldonado-Rodríguez, R., Espinosa-Lara, M., Barrera-León, O., Colin-Tovar, C., González-Yebra, B. Salcedo-Vargas, M., Santiago-Hernández, J. C., Méndez-Tenorio, A., & Beattie, K. L. (2003). Detection of mutations in RET proto-oncogene codon 634 through double tandem hybridization. Molecular Biotechnology, 25, 13–29.

    Google Scholar 

  28. Allawi, H. T., & SantaLucia, J. (1998). Nearest-neighbor thermodynamics of internal A–C mismatches in DNA. Sequence dependence and pH effects. Biochemistry, 37, 9435–9444.

    Article  PubMed  CAS  Google Scholar 

  29. Allawi, H. T., & SantaLucia, J. (1998). Nearest neighbor thermodynamic parameters for internal G·A mismatches in DNA. Biochemistry, 37, 2170–2179.

    Article  PubMed  CAS  Google Scholar 

  30. Bommarito, S., Peyret, N., & SantaLucia, J. (2000). Thermodynamic parameters for DNA sequences with dangling ends. Nucleic Acids Research, 28, 1929–1934.

    Article  PubMed  CAS  Google Scholar 

  31. Belosludtsev, Y., Iverson, B., Lemeshko, S., Eggers, R., Wiese, R., Lee, S., Powdrill, T., & Hogan, M. (2001). DNA microarrays based on noncovalent oligonucleotide attachment and hybridization in two dimensions. Analytical Biochemistry, 292, 250–256.

    Article  PubMed  CAS  Google Scholar 

  32. Pyshnyi, D. V., Pyshnaya, I. A., Levina, A. S., Goldberg, E. L., Zarytova, V. F., Knorre, D. G., & Ivanova, E. M. (2001). Thermodynamic analysis of stacking hybridization of oligonucleotides with DNA template. Journal of Biomolecular Structure & Dynamics, 19, 555–570.

    CAS  Google Scholar 

  33. Southern, E., Mir, K., & Shchepinov, M. (1999). Molecular interactions on microarrays. Nature Genetics, 21, S5–S9.

    Article  Google Scholar 

  34. Vilella, A. J., Blanco, A., Hutter, S., & Rozas, J. (2005). VariScan: Analysis of evolutionary patterns from large-scale DNA sequence polymorphism data. Bioinformatics, 21, 2791–2793.

    Article  PubMed  CAS  Google Scholar 

  35. Doktycz, M. J., Morris, M. D., Dormady, S. J., Beattie, K. L., & Jacobson, K. B. (1995). Optical melting of 128 octamer DNA duplexes. Effects of base pair location and nearest neighbors on thermal stability. Journal of Biological Chemistry, 270, 8439–8445.

    Article  PubMed  CAS  Google Scholar 

  36. Dearlove, A. M. (2002). High throughput genotyping technologies. Briefings in Functional Genomics & Proteomics, 1, 139–150.

    Article  CAS  Google Scholar 

  37. Iwasaki, H., Ezura, Y., Ishida, R., Kajita, M., Kodaira, M., Knight, J., Daniel, S., Shi, M., & Emi, M. (2002). Accuracy of genotyping for single nucleotide polymorphisms by a microarray-based single nucleotide polymorphism typing method involving hybridization of short allele-specific oligonucleotides. DNA Research, 30, 59–62.

    Article  Google Scholar 

  38. Matsuzaki, H., Loi, H., Dong, S., Tsai, Y., Fang, J., Law, J., Di, X., Liu, W., Yang, G., Liu, G., Huang, J., Kennedy, G. C., Ryder, T. B., Marcus, G., Sean Walsh, P. S., Shriver, M. D., Puck, J. P., Jones, K. W., & Mei, R. (2004). Parallel genotyping of over 10,000 SNPs using a one-primer assay on a high-density oligonucleotide array. Genome Research, 14, 414–425.

Download references

Acknowledgements

Financial support for this work was provided by PROMEP/103.5/03/1130, Fondo Sectorial Área de Ciencia Básica SEP-CONACYT 2004-C01-46537 and by NIH grant R01 HL62681-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Betanzos-Cabrera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betanzos-Cabrera, G., Harker, B.W., Doktycz, M.J. et al. A Comparison of Hybridization Efficiency between Flat Glass and Channel Glass Solid Supports. Mol Biotechnol 38, 71–80 (2008). https://doi.org/10.1007/s12033-007-9001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-9001-z

Keywords

Navigation