Skip to main content

Advertisement

Log in

From Nutraceuticals to Pharmaceuticals to Nanopharmaceuticals: A Case Study in Angiogenesis Modulation During Oxidative Stress

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

This report reviews the potential applications of nanotechnology in various therapeutics and diagnostics areas with special emphasis on key frontiers in angiogenesis modulation using naturally driven drug targets including compounds that modulate oxidative stress and inflammatory pathways for the potential treatment of vascular, cancer, inflammatory, and ocular disorders. Recent advances of the nanotechnology mediated gene delivery are also described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Parveen, S., & Sahoo, S. K. (2006). Nanomedicine: Clinical applications of polyethylene glycol conjugated proteins and drugs. Clinical Pharmacokinetics, 45(10), 965–988.

    Article  PubMed  CAS  Google Scholar 

  2. Alonso, M. J. (2004). Nanomedicines for overcoming biological barriers. Biomedicine & Pharmacotherapy, 58(3), 168–172.

    Article  CAS  Google Scholar 

  3. Bishop, J. M. (1987). The molecular genetics of cancer. Science, 235(4786), 305–311.

    Article  PubMed  CAS  Google Scholar 

  4. Yang, Y., Nunes, F. A., Berencsi, K., Furth, E. E., Gönczöl, E., & Wilson, J. M. (1994). Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 91, 4407–4411.

    Article  PubMed  CAS  Google Scholar 

  5. Miller, N., & Vile, R. (1995). Targeted vectors for gene therapy. FASEB, 9, 190–199.

    CAS  Google Scholar 

  6. Luo, D., & Saltzman, W. M. (2000). Synthetic DNA delivery systems. Nature Biotechnology, 18, 33–37.

    Article  PubMed  CAS  Google Scholar 

  7. Verma, I. M., & Somia, N. (1997). Gene therapy- promises, problems and prospects. Nature, 389, 239–242.

    Article  PubMed  CAS  Google Scholar 

  8. Tang, M. X., Redemann, C. T., & Szoka, F. C. Jr. (1996). In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconjugate Chemistry, 7, 703–714.

    Article  PubMed  CAS  Google Scholar 

  9. Boussif, O., Lezoualc’h, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B., & Behr, J. P. (1995). A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: Polyethylenimine. Proceedings of the National Academy of Sciences, 92, 7297–7301.

    Article  CAS  Google Scholar 

  10. Godbey, W. T., Wu, K. K., & Mikos, A. G. (1999). Tracking the intracellular path of poly (ethylenimine)/DNA complexes for gene delivery. Proceedings of the National Academy of Sciences, 96, 5177–5181.

    Article  CAS  Google Scholar 

  11. Uchegbu I. F. (2006). Pharmaceutical nanotechnology: Polymeric vesicles for drug and gene delivery. Expert Opinion on Drug Delivery, 3(5), 629–640.

    Article  PubMed  CAS  Google Scholar 

  12. Kneuer, C., Sameti, M., Haltner, E. G., Schiestel, T., Schirra, H., Schmidt, H., & Lehr, C. M. (2000). Silica nanoparticles modified with aminosilanes as carriers for plasmid DNA. International Journal of Pharmaceutics, 196, 257–261.

    Article  PubMed  CAS  Google Scholar 

  13. Jain, T. K., Roy, I., De, T. K., & Maitra, A. (1998). Nanometer silica particles encapsulating active compounds: A novel ceramic drug carrier. Journal of the American Chemical Society, 120(43), 11092–11095.

    Google Scholar 

  14. Graham, F. L., & Van der Eb, A. J. (1973). A new technique for the assay of infectivity of human adenoviruses 5 DNA. Virology, 52, 456–467.

    Article  PubMed  CAS  Google Scholar 

  15. Orrantia, E., & Chang, P. L. (1990). Intracellular distribution of DNA internalized through calcium phosphate precipitation. Experimental Cell Research, 190, 170–174.

    Article  PubMed  CAS  Google Scholar 

  16. Roy, I., Mitra, S., Maitra, A., & Mozumdar, S. (2003). Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery. International Journal of Pharmaceutics, 250, 25–33.

    Article  PubMed  CAS  Google Scholar 

  17. Sameti, M., Bohr, G., Kneuer, C., Bakowsky, U., Nacken, U., Schmidt, M., & Lehr, C. M. (2003). Stabilisation of cationically modified silica nanoparticles for gene delivery by freeze-drying. International Journal of Pharmaceutics, 266, 51–60.

    Article  PubMed  CAS  Google Scholar 

  18. Csogor, Z., Nacken, M., Sameti, M., Lehr, C. M., & Schmidt, H. (2003). Modified silica particles for gene delivery. Material Science and Engineering: C, 23, 93–97.

    Article  Google Scholar 

  19. Luo, D., & Saltzman, W. M. (2000). Enhancement of transfection by physical concentration of DNA at the cell surface. Nature Biotechnology, 18, 893–895.

    Article  PubMed  CAS  Google Scholar 

  20. Bharali, D. J., Klejbor, I., Stachowiak, E. K., Dutta- Roy, P., Kaur, N., Bergey, E. J., Prasad, P. N., & Stachowiak, M. K. (2005). Organically modified silica nanoparticles: A nonviral vector for in vivo gene delivery and expression in the brain. Proceedings of the National Academy of Sciences of the United States of America, 102, 11539–11544.

    Article  PubMed  CAS  Google Scholar 

  21. Das, S., Jain, T. K., & Maitra, A. (2002). Inorganic-organic hybrid nanoparticles from n-octyl triethoxy silane. Journal of Colloid and Interface Science, 252, 82–88.

    Article  PubMed  CAS  Google Scholar 

  22. Roy, I., Ohulchanskyy, T. Y., Bharali, D. J., Pudavar, H. E., Mistretta, R. A., Kaur, N., & Prasad, P. N. (2005). Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. Proceedings of the National Academy of Sciences of the United States of America, 102, 279–284.

    Article  PubMed  CAS  Google Scholar 

  23. Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016.

    Article  PubMed  CAS  Google Scholar 

  24. Warren, C. W., & Chan, S. N. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281, 2016–2018.

    Article  Google Scholar 

  25. Akerman, M. E., Chan, W. C. W., Laakkomen, P., Bhatia, S. N., & Ruoslahti, E. (2002). Nanocrystal targeting in vivo. Proceedings of the National Academy of Sciences, 99, 12617–12621.

    Article  CAS  Google Scholar 

  26. Schätzlein, A.G. (2006). Delivering cancer stem cell therapies—A role for nanomedicines? European Journal of Cancer, 42, 1309–1315.

    Article  PubMed  CAS  Google Scholar 

  27. Folkman, J., (1971). Tumor angiogenesis: Therapeutic implications. The New England Journal of Medicine, 285, 1182–1186.

    Article  PubMed  CAS  Google Scholar 

  28. Folkman, J. (1989). What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute, 82, 4–6.

    Article  Google Scholar 

  29. Moehler, T. M., Ho, A. D., Goldschmidt, H., & Barlogie, B. (2003). Angiogenesis in hematologic malignancies. Critical Reviews in Oncology/Hematology, 45, 227–244.

    Article  PubMed  CAS  Google Scholar 

  30. Collins, T. S., & Hurwitz, H. I. (2005). Targeting vascular endothelial growth factor and angiogenesis for the treatment of colorectal cancer. Seminars in Oncology, 32, 61–68.

    Article  PubMed  CAS  Google Scholar 

  31. O’Reilly, M.S. (1997). The preclinical evaluation of angiogenesis inhibitors. Investigational New Drugs, 15, 5–13.

    Article  PubMed  CAS  Google Scholar 

  32. O’Reilly, M.S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., & Folkman, J. (1997). Endostatin: An endogenous inhibitor of angiogenesis and tumor growth. Cell, 88, 277–285.

    Article  PubMed  CAS  Google Scholar 

  33. Ferrara, N., & Alitalo, K. (1999). Clinical applications of angiogenic growth factors and their inhibitors. Nature Medicine, 5, 1359–1364.

    Article  PubMed  CAS  Google Scholar 

  34. Gale, N. W., & Yancopuolos, G. D. (1999). Growth factors acting via endothelial cell-specific receptor tyrosine kinases: VEGFs, angiopoietins, and ephrins in vascular development. Genes & Development, 13, 1055–1066.

    CAS  Google Scholar 

  35. Streit, M., Riccardi, L., Velasco, P., Brown, L. F., Hawighorst, T., Bornstein, P., & Detmar, M. (1999). Thrombospondin-2: A potent endogenous inhibitor of tumor growth and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 96, 14888–14893.

    Article  PubMed  CAS  Google Scholar 

  36. Kyriakides, T. R., Leach, K. J., Hoffman, A. S., Ratner, B. D., & Bornstein, P. (1999). Mice that lack the angiogenesis inhibitor, thrombospondin 2, mount an altered foreign body reaction characterized by increased vascularity. Proceedings of the National Academy of Sciences of the United States of America, 96, 4449–4454.

    Article  PubMed  CAS  Google Scholar 

  37. Panetti, T. S., Chen, H., Misenheimer, T. M., Getzler, S. B., & Mosher, D. F. (1997). Endothelial cell mitogenesis induced by LPA: Inhibition by thrombospondin-1 and thrombospondin-2. The Journal of Laboratory and Clinical Medicine, 129, 208–216.

    Article  PubMed  CAS  Google Scholar 

  38. Volpert, O. V., Tolsma, S. S., Pellerin, S., Feige, J. J., Chen, H., Mosher, D. F., & Bouck, N. (1995). Inhibition of angiogenesis by thrombospondin-2. Biochemical and Biophysical Research Communications, 217, 326–332.

    Article  PubMed  CAS  Google Scholar 

  39. Armstrong, D., et al. (1998). Lipid hydroperoxide stimulates neovascularization in rabbit retina through expression of TNFa, VEGF and PDGF. Angiogenesis, 2, 93–104.

    Article  PubMed  CAS  Google Scholar 

  40. Ueda, T., et al. (1997). Lipid hydroperoxide and TNFa in a corneal model of neovascularization: Effect of TNFa inhibitors. Angiogenesis, 1, 174–184.

    Article  CAS  Google Scholar 

  41. Carmelie, P. (2003). Angiogenesis in health and disease. Nature Medicine, 9, 653–660.

    Article  CAS  Google Scholar 

  42. Yan, X., Lin, Y., Yang, D., Shen, Y., Yuan, M., Zhang, Z., Li, P., Xia, H., Li, L., Luo, D., Liu, Q., Mann, K., & Bader, B. L. (2003). A novel anti-CD146 monoclonal antibody, AA98, inhibits angiogenesis and tumor growth. Blood, 102, 184–191.

    Article  PubMed  CAS  Google Scholar 

  43. Hidalgo, M., & Eckhardt, S. G. (2001). Development of matrix metalloproteinase inhibitors in cancer therapy. Journal of the National Cancer Institute, 93, 178–193.

    Article  PubMed  CAS  Google Scholar 

  44. Prox, D., Becker, C., Pirie-Shepherd, S. R., Celik, I., Folkman, J., & Kisker, O. (2003). Treatment of human pancreatic cancer in mice with angiogenic inhibitors. World Journal of Surgery, 27, 405–411.

    Article  PubMed  Google Scholar 

  45. Zhang, G. F., Wang, Y. H., Zhang, M. A., Wang, Q., Luo, Y. B., Wang, D. S., et al. (2002). Inhibition of growth and metastases of human colon cancer xenograft in nude mice by angiogenesis inhibitor endostatin. Ai Zheng, 21, 50–53.

    PubMed  CAS  Google Scholar 

  46. Katzenstein, H. M., Salwen, H. R., Nguyen, N. N., Meitar, D., & Cohn, S. L. (2001). Antiangiogenic therapy inhibits human neuroblastoma growth. Medical and Pediatric Oncology, 36, 190–193.

    Article  PubMed  CAS  Google Scholar 

  47. Beecken, W. D., Fernandez, A., Joussen, A. M., Achilles, E. G., Flynn, E., Lo, K. M., et al. (2001). Effect of antiangiogenic therapy on slowly growing, poorly vascularized tumors in mice. Journal of the National Cancer Institute, 93, 382–387.

    Article  PubMed  CAS  Google Scholar 

  48. Eder, J. P. Jr., Supko, J. G., Clark, J. W., Puchalski, T. A., Garcia-Carbonero, R., Ryan, D. P., et al. (2002). Phase I clinical trial of recombinant human endostatin administered as a short intravenous infusion repeated daily. Journal of Clinical Oncology, 20, 3772–3784.

    Article  PubMed  CAS  Google Scholar 

  49. Daly, M. E., Makris, A., Reed, M., & Lewis, C. E. (2003). Hemostatic regulators of tumor angiogenesis: A source of antiangiogenic agents for cancer treatment? Journal of the National Cancer Institute, 95, 1660–1673.

    PubMed  CAS  Google Scholar 

  50. Raje, N., & Anderson, K. (1999). Thalidomide–A revival story. The New England Journal of Medicine, 341, 1606–1609.

    Article  PubMed  CAS  Google Scholar 

  51. Mousa, A. S., & Mousa, S. A. (2005). Anti-angiogenesis efficacy of the garlic ingredient alliin and antioxidants: Role of nitric oxide and p53. Nutrition and Cancer, 53(1), 104–110.

    Article  PubMed  CAS  Google Scholar 

  52. Mousa, S. S., Mousa, S. S., & Mousa, S. A. (2005). Effect of resveratrol on angiogenesis and platelet/fibrin-accelerated tumor growth in the chick chorioallantoic membrane model. Nutrition and Cancer, 52(1), 59–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaker A. Mousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mousa, S.A., Bharali, D.J. & Armstrong, D. From Nutraceuticals to Pharmaceuticals to Nanopharmaceuticals: A Case Study in Angiogenesis Modulation During Oxidative Stress. Mol Biotechnol 37, 72–80 (2007). https://doi.org/10.1007/s12033-007-0064-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-0064-7

Keywords

Navigation