Trans Fatty Acids in Membranes: The Free Radical Path


The double bond geometry of most of the naturally occurring unsaturated fatty acid residues is cis. Due to the relevance of fatty acids as structural components of cell membranes and as biologically active molecules, the change of the cis geometry means a change of the associated functions and activities. The finding that the cis to trans isomerization is effective in phospholipids by the intervention of radical species led to the discovery that there can indeed occur an endogenous formation of trans fatty acids, whose significance in biological systems started to be addressed with in vitro and in vivo studies. Studies of liposome models simulating the formation of isomerizing species and evaluating their ability to interact with the hydrophobic part of the membrane bilayer has contributed to the gain in knowledge of the fundamental features of the lipid isomerization in membranes. Further work is in progress for the identification of the real culprits of the in vivo lipid isomerization, and recent results are shown on oleic acid micelles, where NO2 radicals are not able to induce double bond isomerization in comparison with amphiphilic thiol, such as 2-mercaptoethanol. H2S and sulfur-containing amino acid residues are two of the possible species involved in this process at a biological level. An update of the scenario of the geometrical isomerization in membranes by free radicals is provided, together with applications and perspectives in life sciences.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Cutler, R. G., & Rodriguez, H. (2003). Critical reviews of oxidative stress and aging. Singapore: World Scientific Publishing Co., Ltd.

    Google Scholar 

  2. 2.

    Fox, B. G., Lyle, K. S., & Rogge, C. E. (2004). Reactions of the diiron enzyme stearoyl-acyl carrier protein desaturase. Accounts of Chemical Research, 37, 421–429.

    PubMed  Article  CAS  Google Scholar 

  3. 3.

    Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H., Jr., Murphy, R. C., Raetz, C. R. H., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M. S., White, S. H., Witztum, J. L., & Dennis, E. A. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46, 839–862.

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Feng, L., & Prestwich, G. D. (Eds.). (2006). Functional lipidomics. New York: CRC Press, Taylor & Francis.

    Google Scholar 

  5. 5.

    Cronan, J. E., Jr. (2002). Phospholipids modification in bacteria. Current Opinion in Microbiology, 5, 202–205.

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Sébédio, J. L., Vermunt, S. H. F., Chardigny, J. M., Beaufrere, B., Mensink, R. P., Armstrong, R. A., Christie, W. W., Niemelä, J., Hènon, G., & Riemersma, R. A. (2000). The effect of dietary trans α-linolenic acid on plasma lipids and platelet fatty acid composition: the TransLinE study. European Journal of Clinical Nutrition, 54, 104–113.

    PubMed  Article  Google Scholar 

  7. 7.

    Sébédio, J.-L., & Christie, W. W. (Eds.). (1998). Trans fatty acids in human nutrition. Dundee: The Oily Press.

    Google Scholar 

  8. 8.

    Niu, S.-L., Mitchell, D. C., & Litman, B. J. (2005). Trans fatty acid derived phospholipids show increased membrane cholesterol and reduced receptor activation as compared to their cis analogs. Biochemistry, 44, 4458–4465.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Helmkamp, G. M., Jr. (1980). Effects of phospholipid fatty acid composition and membrane fluidity on the activity of bovine brain phospholipid exchange protein. Biochemistry, 19, 2050–2056.

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Ferreri, C., & Chatgilialoglu, C. (2005). Geometrical trans lipid isomers: A new target for lipidomics. ChemBioChem, 6, 1722–1734.

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Ferreri, C., Kratzsch, S., Brede, O., Marciniak, B., & Chatgilialoglu, C. (2005). Trans lipid formation induced by thiols in human monocytic leukemia cells. Free Radical Biology & Medicine, 38, 1180–1187.

    Article  CAS  Google Scholar 

  12. 12.

    Chatgilialoglu, C., Ferreri, C., Ballestri, M., Mulazzani, Q. G., & Landi, L. (2000). Cis-trans-isomerization of monounsaturated fatty acid residues in phospholipids by thiyl radicals. Journal of the American Chemical Society, 122, 4593–4601.

    Article  CAS  Google Scholar 

  13. 13.

    Ferreri, C., Costantino, C., Perrotta, L., Landi, L., Mulazzani, Q. G., & Chatgilialoglu, C. (2001). Cis-trans isomerization of polyunsaturated fatty acid residues in phospholipids catalyzed by thiyl radicals. Journal of the American Chemical Society, 123, 4459–4468.

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Ferreri, C., Samadi, A., Sassatelli, F., Landi, L., & Chatgilialoglu C. (2004). Regioselective cis-trans isomerization of arachidonic double bonds by thiyl radicals: The influence of phospholipid supramolecular organization. Journal of the American Chemical Society, 126, 1063–1072.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Halliwell, B., & Gutteridge, J. M. C. (Eds.). (2001). Free radicals in biology and medicine. London: Oxford University Press.

    Google Scholar 

  16. 16.

    Sies, H. (1999). Glutathione and its role in cellular functions. Free Radical Biology & Medicine, 27, 916–921.

    Article  CAS  Google Scholar 

  17. 17.

    Anagnostopoulos, D., Chatgilialoglu, C., Ferreri, C., Samadi, A., & Siafaka-Kapadai, A. (2005). Synthesis of all-trans arachidonic acid and its effect on rabbit platelet aggregation. Bioorganic & Medicinal Chemistry Letters, 15, 2766–2770.

    Article  CAS  Google Scholar 

  18. 18.

    Zambonin, L., Ferreri, C., Cabrini, L., Prata, C., Chatgilialoglu, C., & Landi, L. (2006). Occurrence of trans fatty acids in rats fed a trans-free diet: A free radical-mediated formation? Free Radical Biology & Medicine, 40, 1549–1556.

    Article  CAS  Google Scholar 

  19. 19.

    Lykakis, I. N., Ferreri, C., & Chatgilialoglu, C. (2007). The sulfhydryl radical (HS·/S·¯): A contender for the isomerization of double bonds in membrane lipids. Angewandte Chemie International Edition in English, 46, 1914–1916.

    Article  CAS  Google Scholar 

  20. 20.

    Kamoun, P. (2004). Endogenous production of hydrogen sulfide in mammals. Amino Acids, 26, 243–254.

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Li, L., Bhatia, M., & Moore, P. K. (2006). Hydrogen sulphide: A novel mediator of inflammation? Current Opinion in Pharmacology, 6, 125–129.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Pryor, W. A., Houk, K. N., Foote, C. S., Fukuto, J. M., Ignarro, L. J., Squadrito, G. L., & Davies, K. J. A. (2006). Free radical biology and medicine: It’s a gas, man! American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 291, 491–511.

    Google Scholar 

  23. 23.

    Jiang, H., Kruger, N., Lahiri, D. R., Wang, D., Vatèle, J.-M., & Balazy, M. (1999). Nitrogen dioxide induces cis-trans isomerization of arachidonic acid within cellular phospholipids. The Journal of Biological Chemistry, 274, 16235–16241.

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Pryor, W. A., Lightsey, J. W., & Church, D. F. (1982). Reaction of nitrogen dioxide with alkenes and polyunsaturated fatty acids: Addition and hydrogen abstraction mechanisms. Journal of the American Chemical Society, 104, 6685–6692.

    Article  CAS  Google Scholar 

  25. 25.

    Zghibeh, C. M., Raj Ghopal, V., Poff, C. D., Falck, J. R., & Balazy, M. (2004). Determination of trans-arachidonic acid isomers in human blood plasma. Analytical Biochemistry, 332, 137–144.

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Kermorvant-Duchemin, E., Sennlaub, F., Sirinyan, M., Brault, S., Andelfinger, G., Kooli, A., Germain, S., Ong, H., d’Orleans-Juste, P., Gobeil, F., Jr., Zhu, T., Boisvert, C., Hardy, P., Jain, K., Falck, J. R., Balazy, M., & Chemtob, S. (2005). Trans-arachidonic acids generated during nitrative stress induce a thrombospondin-1-dependent microvascular degeneration. Nature Medicine, 11, 1339–1345.

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Everett, S. A., Dennis, M. F., Patel, K. B., Maddix, S., Kundu, S. C., & Willson, R. L. (1996). Scavenging of nitrogen dioxide, thiyl, and sulfonyl free radicals by the nutritional antioxidant β-carotene. The Journal of Biological Chemistry, 271, 3988–3994.

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Wardman, P. (1998). Nitrogen dioxide in biology: Correlating chemical kinetics with biological effects. In Z. B. Alfassi (Ed.), N-Centered radicals (pp. 155–179). Chichester: John Wiley & Sons.

    Google Scholar 

  29. 29.

    Shapira, R., & Stein, G. (1968). Reactions of aromatic and sulphur amino acids in ribonuclease with hydrogen atoms in water solution. Science, 162, 1489–1491.

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Kadlcik, V., Sicard-Roselli, C., Houée-Levin, C., Ferreri, C., & Chatgilialoglu, C. (2006). Reductive modification of methionine residue in amyloid β peptide. Angewandte Chemie International Edition in English, 45, 2595–2598.

    Article  CAS  Google Scholar 

  31. 31.

    Ferreri, C., Manco, I., Faraone-Mennella, M. R., Torreggiani, A., Tamba, M., Manara, S., & Chatgilialoglu, C. (2006). The reaction of hydrogen atoms with methionine residues: A model of reductive radical stress causing tandem protein-lipid damage. ChemBioChem, 7, 1738–1744.

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Mozziconacci, O., Bobrowski, K., Ferreri, C., & Chatgilialoglu, C. (2007). Reaction of hydrogen atom with Met-enkephalin and related peptides. Chemistry A European Journal, 13, 2029–2033.

    Article  CAS  Google Scholar 

  33. 33.

    Torreggiani, A., Tamba, M., Manco, I., Faraone-Mennella, M. R., Ferreri, C., & Chatgilialoglu, C. (2005). Radiation damage of lysozyme in a biomimetic model: Some insights by Raman spectroscopy. Journal of Molecular Structure, 744–747, 767–773.

    Article  Google Scholar 

  34. 34.

    Chatgilialoglu, C., Zambonin, L., Altieri, A., Ferreri, C., Mulazzani, Q. G., & Landi, L., (2002). Geometrical isomerism of monounsaturated fatty acids. Thiyl radical catalysis and influence of antioxidant vitamins. Free Radical Biology & Medicine, 33, 1681–1692.

    Article  CAS  Google Scholar 

Download references


The authors wish to thank all scientists that in these years collaborated to their research, coupling ideas with passion.

Author information



Corresponding author

Correspondence to Carla Ferreri.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ferreri, C., Panagiotaki, M. & Chatgilialoglu, C. Trans Fatty Acids in Membranes: The Free Radical Path. Mol Biotechnol 37, 19–25 (2007).

Download citation


  • Trans lipid
  • Trans fatty acid
  • Geometric isomerization
  • Radical isomerization
  • Thiyl radical
  • Radical damage
  • Protein damage
  • Lipid damage