Advertisement

Molecular Biotechnology

, Volume 37, Issue 1, pp 19–25 | Cite as

Trans Fatty Acids in Membranes: The Free Radical Path

  • Carla FerreriEmail author
  • Maria Panagiotaki
  • Chryssostomos Chatgilialoglu
Review

Abstract

The double bond geometry of most of the naturally occurring unsaturated fatty acid residues is cis. Due to the relevance of fatty acids as structural components of cell membranes and as biologically active molecules, the change of the cis geometry means a change of the associated functions and activities. The finding that the cis to trans isomerization is effective in phospholipids by the intervention of radical species led to the discovery that there can indeed occur an endogenous formation of trans fatty acids, whose significance in biological systems started to be addressed with in vitro and in vivo studies. Studies of liposome models simulating the formation of isomerizing species and evaluating their ability to interact with the hydrophobic part of the membrane bilayer has contributed to the gain in knowledge of the fundamental features of the lipid isomerization in membranes. Further work is in progress for the identification of the real culprits of the in vivo lipid isomerization, and recent results are shown on oleic acid micelles, where NO2 radicals are not able to induce double bond isomerization in comparison with amphiphilic thiol, such as 2-mercaptoethanol. H2S and sulfur-containing amino acid residues are two of the possible species involved in this process at a biological level. An update of the scenario of the geometrical isomerization in membranes by free radicals is provided, together with applications and perspectives in life sciences.

Keywords

Trans lipid Trans fatty acid Geometric isomerization Radical isomerization Thiyl radical Radical damage Protein damage Lipid damage 

Notes

Acknowledgment

The authors wish to thank all scientists that in these years collaborated to their research, coupling ideas with passion.

References

  1. 1.
    Cutler, R. G., & Rodriguez, H. (2003). Critical reviews of oxidative stress and aging. Singapore: World Scientific Publishing Co., Ltd.Google Scholar
  2. 2.
    Fox, B. G., Lyle, K. S., & Rogge, C. E. (2004). Reactions of the diiron enzyme stearoyl-acyl carrier protein desaturase. Accounts of Chemical Research, 37, 421–429.PubMedCrossRefGoogle Scholar
  3. 3.
    Fahy, E., Subramaniam, S., Brown, H. A., Glass, C. K., Merrill, A. H., Jr., Murphy, R. C., Raetz, C. R. H., Russell, D. W., Seyama, Y., Shaw, W., Shimizu, T., Spener, F., van Meer, G., VanNieuwenhze, M. S., White, S. H., Witztum, J. L., & Dennis, E. A. (2005). A comprehensive classification system for lipids. Journal of Lipid Research, 46, 839–862.PubMedCrossRefGoogle Scholar
  4. 4.
    Feng, L., & Prestwich, G. D. (Eds.). (2006). Functional lipidomics. New York: CRC Press, Taylor & Francis.Google Scholar
  5. 5.
    Cronan, J. E., Jr. (2002). Phospholipids modification in bacteria. Current Opinion in Microbiology, 5, 202–205.PubMedCrossRefGoogle Scholar
  6. 6.
    Sébédio, J. L., Vermunt, S. H. F., Chardigny, J. M., Beaufrere, B., Mensink, R. P., Armstrong, R. A., Christie, W. W., Niemelä, J., Hènon, G., & Riemersma, R. A. (2000). The effect of dietary trans α-linolenic acid on plasma lipids and platelet fatty acid composition: the TransLinE study. European Journal of Clinical Nutrition, 54, 104–113.PubMedCrossRefGoogle Scholar
  7. 7.
    Sébédio, J.-L., & Christie, W. W. (Eds.). (1998). Trans fatty acids in human nutrition. Dundee: The Oily Press.Google Scholar
  8. 8.
    Niu, S.-L., Mitchell, D. C., & Litman, B. J. (2005). Trans fatty acid derived phospholipids show increased membrane cholesterol and reduced receptor activation as compared to their cis analogs. Biochemistry, 44, 4458–4465.PubMedCrossRefGoogle Scholar
  9. 9.
    Helmkamp, G. M., Jr. (1980). Effects of phospholipid fatty acid composition and membrane fluidity on the activity of bovine brain phospholipid exchange protein. Biochemistry, 19, 2050–2056.PubMedCrossRefGoogle Scholar
  10. 10.
    Ferreri, C., & Chatgilialoglu, C. (2005). Geometrical trans lipid isomers: A new target for lipidomics. ChemBioChem, 6, 1722–1734.PubMedCrossRefGoogle Scholar
  11. 11.
    Ferreri, C., Kratzsch, S., Brede, O., Marciniak, B., & Chatgilialoglu, C. (2005). Trans lipid formation induced by thiols in human monocytic leukemia cells. Free Radical Biology & Medicine, 38, 1180–1187.CrossRefGoogle Scholar
  12. 12.
    Chatgilialoglu, C., Ferreri, C., Ballestri, M., Mulazzani, Q. G., & Landi, L. (2000). Cis-trans-isomerization of monounsaturated fatty acid residues in phospholipids by thiyl radicals. Journal of the American Chemical Society, 122, 4593–4601.CrossRefGoogle Scholar
  13. 13.
    Ferreri, C., Costantino, C., Perrotta, L., Landi, L., Mulazzani, Q. G., & Chatgilialoglu, C. (2001). Cis-trans isomerization of polyunsaturated fatty acid residues in phospholipids catalyzed by thiyl radicals. Journal of the American Chemical Society, 123, 4459–4468.PubMedCrossRefGoogle Scholar
  14. 14.
    Ferreri, C., Samadi, A., Sassatelli, F., Landi, L., & Chatgilialoglu C. (2004). Regioselective cis-trans isomerization of arachidonic double bonds by thiyl radicals: The influence of phospholipid supramolecular organization. Journal of the American Chemical Society, 126, 1063–1072.PubMedCrossRefGoogle Scholar
  15. 15.
    Halliwell, B., & Gutteridge, J. M. C. (Eds.). (2001). Free radicals in biology and medicine. London: Oxford University Press.Google Scholar
  16. 16.
    Sies, H. (1999). Glutathione and its role in cellular functions. Free Radical Biology & Medicine, 27, 916–921.CrossRefGoogle Scholar
  17. 17.
    Anagnostopoulos, D., Chatgilialoglu, C., Ferreri, C., Samadi, A., & Siafaka-Kapadai, A. (2005). Synthesis of all-trans arachidonic acid and its effect on rabbit platelet aggregation. Bioorganic & Medicinal Chemistry Letters, 15, 2766–2770.CrossRefGoogle Scholar
  18. 18.
    Zambonin, L., Ferreri, C., Cabrini, L., Prata, C., Chatgilialoglu, C., & Landi, L. (2006). Occurrence of trans fatty acids in rats fed a trans-free diet: A free radical-mediated formation? Free Radical Biology & Medicine, 40, 1549–1556.CrossRefGoogle Scholar
  19. 19.
    Lykakis, I. N., Ferreri, C., & Chatgilialoglu, C. (2007). The sulfhydryl radical (HS·/S·¯): A contender for the isomerization of double bonds in membrane lipids. Angewandte Chemie International Edition in English, 46, 1914–1916.CrossRefGoogle Scholar
  20. 20.
    Kamoun, P. (2004). Endogenous production of hydrogen sulfide in mammals. Amino Acids, 26, 243–254.PubMedCrossRefGoogle Scholar
  21. 21.
    Li, L., Bhatia, M., & Moore, P. K. (2006). Hydrogen sulphide: A novel mediator of inflammation? Current Opinion in Pharmacology, 6, 125–129.PubMedCrossRefGoogle Scholar
  22. 22.
    Pryor, W. A., Houk, K. N., Foote, C. S., Fukuto, J. M., Ignarro, L. J., Squadrito, G. L., & Davies, K. J. A. (2006). Free radical biology and medicine: It’s a gas, man! American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 291, 491–511.Google Scholar
  23. 23.
    Jiang, H., Kruger, N., Lahiri, D. R., Wang, D., Vatèle, J.-M., & Balazy, M. (1999). Nitrogen dioxide induces cis-trans isomerization of arachidonic acid within cellular phospholipids. The Journal of Biological Chemistry, 274, 16235–16241.PubMedCrossRefGoogle Scholar
  24. 24.
    Pryor, W. A., Lightsey, J. W., & Church, D. F. (1982). Reaction of nitrogen dioxide with alkenes and polyunsaturated fatty acids: Addition and hydrogen abstraction mechanisms. Journal of the American Chemical Society, 104, 6685–6692.CrossRefGoogle Scholar
  25. 25.
    Zghibeh, C. M., Raj Ghopal, V., Poff, C. D., Falck, J. R., & Balazy, M. (2004). Determination of trans-arachidonic acid isomers in human blood plasma. Analytical Biochemistry, 332, 137–144.PubMedCrossRefGoogle Scholar
  26. 26.
    Kermorvant-Duchemin, E., Sennlaub, F., Sirinyan, M., Brault, S., Andelfinger, G., Kooli, A., Germain, S., Ong, H., d’Orleans-Juste, P., Gobeil, F., Jr., Zhu, T., Boisvert, C., Hardy, P., Jain, K., Falck, J. R., Balazy, M., & Chemtob, S. (2005). Trans-arachidonic acids generated during nitrative stress induce a thrombospondin-1-dependent microvascular degeneration. Nature Medicine, 11, 1339–1345.PubMedCrossRefGoogle Scholar
  27. 27.
    Everett, S. A., Dennis, M. F., Patel, K. B., Maddix, S., Kundu, S. C., & Willson, R. L. (1996). Scavenging of nitrogen dioxide, thiyl, and sulfonyl free radicals by the nutritional antioxidant β-carotene. The Journal of Biological Chemistry, 271, 3988–3994.PubMedCrossRefGoogle Scholar
  28. 28.
    Wardman, P. (1998). Nitrogen dioxide in biology: Correlating chemical kinetics with biological effects. In Z. B. Alfassi (Ed.), N-Centered radicals (pp. 155–179). Chichester: John Wiley & Sons.Google Scholar
  29. 29.
    Shapira, R., & Stein, G. (1968). Reactions of aromatic and sulphur amino acids in ribonuclease with hydrogen atoms in water solution. Science, 162, 1489–1491.PubMedCrossRefGoogle Scholar
  30. 30.
    Kadlcik, V., Sicard-Roselli, C., Houée-Levin, C., Ferreri, C., & Chatgilialoglu, C. (2006). Reductive modification of methionine residue in amyloid β peptide. Angewandte Chemie International Edition in English, 45, 2595–2598.CrossRefGoogle Scholar
  31. 31.
    Ferreri, C., Manco, I., Faraone-Mennella, M. R., Torreggiani, A., Tamba, M., Manara, S., & Chatgilialoglu, C. (2006). The reaction of hydrogen atoms with methionine residues: A model of reductive radical stress causing tandem protein-lipid damage. ChemBioChem, 7, 1738–1744.PubMedCrossRefGoogle Scholar
  32. 32.
    Mozziconacci, O., Bobrowski, K., Ferreri, C., & Chatgilialoglu, C. (2007). Reaction of hydrogen atom with Met-enkephalin and related peptides. Chemistry A European Journal, 13, 2029–2033.CrossRefGoogle Scholar
  33. 33.
    Torreggiani, A., Tamba, M., Manco, I., Faraone-Mennella, M. R., Ferreri, C., & Chatgilialoglu, C. (2005). Radiation damage of lysozyme in a biomimetic model: Some insights by Raman spectroscopy. Journal of Molecular Structure, 744–747, 767–773.CrossRefGoogle Scholar
  34. 34.
    Chatgilialoglu, C., Zambonin, L., Altieri, A., Ferreri, C., Mulazzani, Q. G., & Landi, L., (2002). Geometrical isomerism of monounsaturated fatty acids. Thiyl radical catalysis and influence of antioxidant vitamins. Free Radical Biology & Medicine, 33, 1681–1692.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Carla Ferreri
    • 1
    Email author
  • Maria Panagiotaki
    • 1
  • Chryssostomos Chatgilialoglu
    • 1
  1. 1.ISOF-CNRBolognaItaly

Personalised recommendations