Skip to main content

Alterations in Antioxidant Enzymes During Aging in Humans


The oxidative stress theory of aging offers the best mechanistic elucidation of the aging phenomenon and other age-related diseases. The susceptibility of an individual depends on the antioxidant status of the body. In humans, the antioxidant system includes a number of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), nonenzymatic antioxidants such as glutathione (GSH), protein –SH, ascorbic acid, and uric acid, and dietary antioxidants. Antioxidant enzymes form the first line of defense against reactive oxygen species. In an earlier report, we showed that the plasma antioxidant potential in humans decreases as a function of age and that there are compensatory mechanisms operating in the body which are induced to maintain the antioxidant capacity during aging. In the present study, we report the relationship between human aging and antioxidant enzymes SOD and CAT; we also correlate the activity of these enzymes with the antioxidant capacity of the plasma. Our results show a significantly higher plasma SOD and CAT activity in older individuals than in younger individuals. The induction in activity of SOD and CAT during human aging may be a compensatory response of the individual to an increased oxidative stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Harman, D. (1956). Aging: A theory based on free radical and radiation chemistry. Journals of Gerontology, 11, 298–300.

    PubMed  CAS  Google Scholar 

  2. 2.

    Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Review, 82, 47–95.

    CAS  Google Scholar 

  3. 3.

    Inal, M. E., Kanbak, G., & Sunal, E. (2001). Antioxidant enzyme activities and malondialdehyde levels related to aging. Clinica Chimica Acta, 305, 75–80.

    Article  CAS  Google Scholar 

  4. 4.

    Gil, L., Siems, W., Mazurek, B., Gross, J., Schroeder, P., Voss, P., & Grune, T. (2006). Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Radical Research, 40, 495–505.

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Melov, S. (2002). Animals models of oxidative stress, aging, and therapeutic antioxidant interventions. International Journal of Biochemistry & Cell Biology, 34, 1395–1400.

    Article  CAS  Google Scholar 

  6. 6.

    Barja, G. (2002). Rate of generation of oxidative stress-related damage and animal longevity. Free Radical Biology and Medicine, 33, 1167–1172.

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Bonnefont-Rousselot, D., Therond, P., Beaudeux, J. L., Peynet, J., Legrand, A., & Delattre, J. (2001). Aging and oxidative stress. Which potential markers ? Annales De Biologie Clinique, 59, 453–459.

    PubMed  CAS  Google Scholar 

  8. 8.

    Stadtman, E. R. (2002). Importance of individuality in oxidative stress and aging. Free Radical Biology and Medicine, 33, 597–604.

    PubMed  Article  CAS  Google Scholar 

  9. 9.

    Winklhofer-Roob, B. M., Meinitzer, A., Maritschnegg, M., Roob, J. M., Khoschsorur, G., Ribalta, J., Sundl, I., Wuga, S., Wonisch, W., Tiran, B., Rock, E., & VITAGE Study Group. (2004). Effects of vitamin E depletion/repletion on biomarkers of oxidative stress in health aging. Annals of the New York Academy Sciences, 1031, 361–364.

    Google Scholar 

  10. 10.

    Rizvi, S. I., Jha, R., & Maurya, P. K. (2006). Erythrocyte plasma membrane redox system in human aging. Rejuvenation Research, 9, 490–474.

    Article  Google Scholar 

  11. 11.

    Cao, G., Booth, S. L., Sadowsky, J. A., & Prior, R. L. (1998). Increases in human plasma antioxidant capacity after consumption of controlled diets high in fruit and vegetables. American Journal of Clinical Nutrition, 68, 1081–1087.

    PubMed  CAS  Google Scholar 

  12. 12.

    Franco, A. A., Odom, R. S., & Rando, T. A. (1999). Regulation of antioxidant enzymes gene expression in response to oxidative stress and during differentiation of mouse skeletal muscles. Free Radical Biology and Medicine, 50, 2093–2098.

    Google Scholar 

  13. 13.

    Wei, Y. H., & Lee, H. C. (2002). Oxidative stress,mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Experimental Biology and Medicine 227, 671–682.

    PubMed  CAS  Google Scholar 

  14. 14.

    Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47, 469–474.

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. Journal of Biological Chemistry, 195, 133.

    PubMed  CAS  Google Scholar 

  16. 16.

    Lowry, O. H., Rosenbrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  17. 17.

    Judge, S., Jang, Y. M., Smith, A., Hagen, T., & Leeuwenburgh, C. (2005). Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibriller mitochondria: Implications for the mitochondrial theory of aging. FASEB Journal, 19, 419–421.

    PubMed  CAS  Google Scholar 

  18. 18.

    Kasapoglu, M., & Ozben, T. (2001). Alterations of antioxidant enzymes and oxidative stress markers in aging. Experimental Gerontology, 36, 209–220.

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Andersen, H. R., Nielsen, B., Nielsen, F., & Grandjean, P. (1997). Antioxidative enzyme activities in human erythrocytes. Clinical Chemistry, 43, 562–568.

    PubMed  CAS  Google Scholar 

  20. 20.

    Alper, G., Sozmen, E. Y., Kanit, L., Mentes, G., Ersoz, B., & Kutay, F. Z. (1998). Age-related alterations in superoxide dismutase and catalase activities in rat brain. Trends Journal of Medical Science, 28, 491–494.

    CAS  Google Scholar 

  21. 21.

    Semsei, I., Rao, G., & Richardson, A. (1991). Expression of superoxide dismutase and catalase in rat brain as a function of age. Mechanisms of Ageing and Development, 58, 13–19.

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Harman, D. (2006). Free radical theory of aging: An update. Annals of the New York Academy of Sciences, 1067, 1–12.

    Article  Google Scholar 

Download references


This research work was supported by the University Grants Commission, New Delhi through a research grant (F 31-292/2005 SR) to S. I. Rizvi.

Author information



Corresponding author

Correspondence to Syed Ibrahim Rizvi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rizvi, S.I., Maurya, P.K. Alterations in Antioxidant Enzymes During Aging in Humans. Mol Biotechnol 37, 58–61 (2007).

Download citation


  • Human aging
  • Oxidative stress
  • Superoxide dismutase
  • Catalase