Abstract
The capacity to efficiently transduce nondividing cells, shuttle large genetic payloads, and maintain stable long-term transgene expression are attributes that have brought lentiviral vectors to the forefront of gene delivery vehicles for research and therapeutic applications in a clinical setting. Our discussion initiates with advances in lentiviral vector development and how these sophisticated lentiviral vectors reflect improvements in safety, regarding the prevention of replication competent lentiviruses (RCLs), vector mobilization, and insertional mutagenesis. Additionally, we describe conventional molecular regulatory systems to manage gene expression levels in a spatial and temporal fashion in the context of a lentiviral vector. State of the art technology for lentiviral vector production by transient transfection and packaging cell lines are explicitly presented with current practices used for concentration, purification, titering, and determining the safety of a vector stock. We summarize lentiviral vector applications that have received a great deal of attention in recent years including the generation of transgenic animals and the stable delivery of RNA interference molecules. Concluding remarks address some of the successes in preclinical animals, and the recent transition of lentiviral vectors to human clinical trials as therapy for a variety of infectious and genetic diseases.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Shimotohno, K., & Temin, H. M. (1981). Formation of infectious progeny virus after insertion of herpes simplex thymidine kinase gene into DNA of an avian retrovirus. Cell, 26, 67–77.
Wei, C. M., Gibson, M., Spear, P. G., & Scolnick, E. M. (1981). Construction and isolation of a transmissible retrovirus containing the src gene of Harvey murine sarcoma virus and the thymidine kinase gene of herpes simplex virus type 1. Journal of␣Virology, 39, 935–944.
Aiuti, A. et al. (2002). Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science, 296, 2410–2413.
Cavazzana-Calvo, M. et al. (2000). Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science, 288, 669–672.
Hacein-Bey-Abina, S. et al. (2002). Sustained correction of X-linked severe combined immunodeficiency by ex␣vivo gene therapy. The New England Journal of Medicine, 346, 1185–1193.
Gaspar, H. B. et al. (2004). Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet, 364, 2181–2187.
Ott, M. G. et al. (2006). Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nature Medicine, 12, 401–409.
Hacein-Bey-Abina, S. et al. (2003). A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. The New England Journal of Medicine, 348, 255–256.
Check, E. (2005). Gene therapy put on hold as third child develops cancer. Nature, 433, 561.
Nienhuis, A. W., Dunbar, C. E., & Sorrentino, B. P. (2006). Genotoxicity of retroviral integration in hematopoietic cells. Molecular Therapy, 13, 1031–1049.
Lewis, P., Hensel, M., & Emerman, M. (1992). Human immunodeficiency virus infection of cells arrested in the cell cycle. EMBO Journal, 11, 3053–3058.
Naldini, L. et al. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 272, 263–267.
Arya, S. K., Zamani, M., & Kundra, P. (1998). Human immunodeficiency virus type 2 lentivirus vectors for gene transfer: Expression and potential for helper virus-free packaging. Human Gene Therapy, 9, 1371–1380.
Schnell, T., Foley, P., Wirth, M., Munch, J., & Uberla, K. (2000). Development of a self-inactivating, minimal lentivirus vector based on simian immunodeficiency virus. Human Gene Therapy, 11, 439–447.
Olsen, J. C. (1998). Gene transfer vectors derived from equine infectious anemia virus. Gene Therapy, 5, 1481–1487.
Berkowitz, R. D., Ilves, H., Plavec, I., & Veres, G. (2001). Gene transfer systems derived from Visna virus: Analysis of virus production and infectivity. Virology, 279, 116–129.
Berkowitz, R. et al. (2001). Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. Journal of Virology, 75, 3371–3382.
Mselli-Lakhal, L., Guiguen, F., Greenland, T., Mornex, J. F., &␣Chebloune, Y. (2006). Gene transfer system derived from the caprine arthritis-encephalitis lentivirus. Journal of Virological Methods, 136, 177–184.
Poeschla, E. M., Wong-Staal, F., & Looney, D. J. (1998). Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nature Medicine, 4, 354–357.
Wiznerowicz, M., & Trono, D. (2005). Harnessing HIV for therapy, basic research and biotechnology. Trends in Biotechnology, 23, 42–47.
Cockrell, A. S., & Kafri, T. (2003). HIV-1 vectors: Fulfillment of expectations, further advancements, and still a way to go.␣Current HIV Research, 1, 419–439.
Gallay, P., Swingler, S., Song, J., Bushman, F., & Trono, D. (1995). HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase. Cell, 83, 569–576.
Gallay, P., Stitt, V., Mundy, C., Oettinger, M., & Trono, D. (1996). Role of the karyopherin pathway in human immunodeficiency virus type 1 nuclear import. Journal of Virology, 70, 1027–1032.
Gallay, P., Hope, T., Chin, D., & Trono, D. (1997). HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway. Proceedings of the National Academy of Sciences of the USA, 94, 9825–9830.
Bouyac-Bertoia, M. et al. (2001). HIV-1 infection requires a functional integrase NLS. Molecular Cell, 7, 1025–1035.
Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L., & Charneau, P. (2000). HIV-1 genome nuclear import is mediated by a central DNA flap. Cell, 101, 173–185.
Yamashita, M., & Emerman, M. (2006). Retroviral infection of non-dividing cells: Old and new perspectives. Virology, 344, 88–93.
Kafri, T., Blomer, U., Peterson, D. A., Gage, F. H., & Verma, I. M. (1997). Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nature Genetics, 17, 314–317.
Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L., & Trono, D. (1997). Multiply attenuated lentiviral vector achieves efficient gene delivery in␣vivo. Nature Biotechnology, 15, 871–875.
Naldini, L., Blomer, U., Gage, F. H., Trono, D., & Verma, I. M. (1996). Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proceedings of the National Academy of Sciences of the USA, 93, 11382–11388.
Blomer, U., Naldini, L., Kafri, T., Trono, D., Verma, I. M., &␣Gage, F. H. (1997). Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. Journal of␣Virology, 71, 6641–6649.
Ellis, J. (2005). Silencing and variegation of gammaretrovirus and lentivirus vectors. Human Gene Therapy, 16, 1241–1246.
Kim, V. N., Mitrophanous, K., Kingsman, S. M., & Kingsman, A. J. (1998). Minimal requirement for a lentivirus vector based on human immunodeficiency virus type 1. Journal of Virology, 72, 811–816.
Akkina, R. K., Walton, R. M., Chen, M. L., Li, Q. X., Planelles, V., & Chen, I. S. (1996). High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. Journal of␣Virology, 70, 2581–2585.
Abordo-Adesida, E. et al. (2005). Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Human Gene Therapy, 16, 741–751.
Follenzi, A., Battaglia, M., Lombardo, A., Annoni, A., Roncarolo, M. G., & Naldini, L. (2004). Targeting lentiviral vector expression to hepatocytes limits transgene-specific immune response and establishes long-term expression of human antihemophilic factor IX in mice. Blood, 103, 3700–3709.
Lamikanra, A., Myers, K. A., Ferris, N., Mitrophanous, K. A., &␣Carroll, M. W. (2005). In vivo evaluation of an EIAV vector for the systemic genetic delivery of therapeutic antibodies. Gene Therapy, 12, 988–998.
Manilla, P. et al. (2005). Regulatory considerations for novel gene therapy products: A review of the process leading to the first clinical lentiviral vector. Human Gene Therapy, 16, 17–25.
Aiken, C. (1997). Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. Journal of Virology, 71, 5871–5877.
DePolo, N. J. et al. (2000). VSV-G pseudotyped lentiviral vector particles produced in human cells are inactivated by human serum. Molecular Therapy, 2, 218–222.
Higashikawa, F., & Chang, L. (2001). Kinetic analyses of stability of simple and complex retroviral vectors. Virology, 280, 124–131.
Croyle, M. A. et al. (2004). PEGylation of a vesicular stomatitis virus G pseudotyped lentivirus vector prevents inactivation in serum. Journal of Virology, 78, 912–921.
Cronin, J., Zhang, X. Y., & Reiser, J. (2005). Altering the tropism of lentiviral vectors through pseudotyping. Current Gene Therapy, 5, 387–398.
Baliga, C. S., van Maanen, M., Chastain, M., & Sutton, R. E. (2006). Vaccination of mice with replication-defective human immunodeficiency virus induces cellular and humoral immunity and protects against vaccinia virus-gag challenge. Molecular Therapy, 14, 432–441.
Morizono, K. et al. (2005). Lentiviral vector retargeting to P-glycoprotein on metastatic melanoma through intravenous injection. Nature Medicine, 11, 346–352.
Yang, L., Bailey, L., Baltimore, D., & Wang, P. (2006). Targeting lentiviral vectors to specific cell types in␣vivo. Proceedings of the National Academy of Sciences of the USA, 103, 11479–11484.
Torashima, T., Yamada, N., Itoh, M., Yamamoto, A., & Hirai, H. (2006). Exposure of lentiviral vectors to subneutral pH shifts the tropism from Purkinje cell to Bergmann glia. The European Journal of Neuroscience, 24, 371–380.
Dull, T. et al. (1998). A third-generation lentivirus vector with a conditional packaging system. Journal of Virology, 72, 8463–8471.
Kotsopoulou, E., Kim, V. N., Kingsman, A. J., Kingsman, S. M., & Mitrophanous, K. A. (2000). A Rev-independent human immunodeficiency virus type 1 (HIV-1)-based vector that exploits a codon-optimized HIV-1 gag-pol gene. Journal of␣Virology, 74, 4839–4852.
ter Brake, O., Konstantinova, P., Ceylan, M., & Berkhout, B. (2006). Silencing of HIV-1 with RNA interference: A multiple shRNA approach. Molecular Therapy, 14, 883–892.
Wu, X. et al. (2000). Development of a novel trans-lentiviral vector that affords predictable safety. Molecular Therapy, 2, 47–55.
Kappes, J. C., Wu, X., & Wakefield, J. K. (2003). Production of trans-lentiviral vector with predictable safety. Methods in Molecular Medicine, 76, 449–465.
Frederickson, R. M. (2005). Report from the 2nd stem cell clonality and genotoxicity retreat. Molecular Therapy, 12, 379–383.
Mortellaro, A. et al. (2006). Ex vivo gene therapy with lentiviral vectors rescues adenosine deaminase (ADA)-deficient mice and corrects their immune and metabolic defects. Blood, 108, 2979–2988.
Carbonaro, D. A. et al. (2006). In vivo transduction by intravenous injection of a lentiviral vector expressing human ADA into neonatal ADA gene knockout mice: A novel form of enzyme replacement therapy for ADA deficiency. Molecular Therapy, 13, 1110–1120.
Themis, M. et al. (2005). Oncogenesis following delivery of a nonprimate lentiviral gene therapy vector to fetal and neonatal mice. Molecular Therapy, 12, 763–771.
Tan, W., Dong, Z., Wilkinson, T. A., Barbas, C. F. 3rd, & Chow, S. A. (2006). Human immunodeficiency virus type 1 incorporated with fusion proteins consisting of integrase and the designed polydactyl zinc finger protein E2C can bias integration of viral DNA into a predetermined chromosomal region in human cells. Journal of Virology, 80, 1939–1948.
Bushman, F. D. (2002). Integration site selection by lentiviruses: Biology and possible control. Current Topics in Microbiology and Immunology, 261, 165–177.
Sandmeyer, S. (2003). Integration by design. Proceedings of the National Academy of Sciences of the USA, 100, 5586–5588.
Lombardo, A. et al. (2006). Towards Gene Correction of X-Linked SCID Using Engineered Zinc Finger Nucleases and Integrase Defective Lentiviral Delivery. Molecular Therapy, 13, S285.
Chun, T. W. et al. (1997). Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature, 387, 183–188.
Pang, S., Koyanagi, Y., Miles, S., Wiley, C., Vinters, H. V., &␣Chen, I. S. (1990). High levels of unintegrated HIV-1 DNA in brain tissue of AIDS dementia patients. Nature, 343, 85–89.
Teo, I. et al. (1997). Circular forms of unintegrated human immunodeficiency virus type 1 DNA and high levels of viral protein expression: association with dementia and multinucleated giant cells in the brains of patients with AIDS. Journal of␣Virology, 71, 2928–2933.
Brown, P. O. (1997). Integration. In: J. M. Coffin, S. H. Hughes, & H. E. Varmus (Eds.), Retroviruses (pp. 161–203). Plainview NY: Cold Spring Harbor Laboratory Press.
Pierson, T. C., Kieffer, T. L., Ruff, C. T., Buck, C., Gange, S. J., & Siliciano, R. F. (2002). Intrinsic stability of episomal circles formed during human immunodeficiency virus type 1 replication. Journal of Virology, 76, 4138–4144.
Butler, S. L., Johnson, E. P., & Bushman, F. D. (2002). Human immunodeficiency virus cDNA metabolism: Notable stability of two-long terminal repeat circles. Journal of Virology, 76, 3739–3747.
Brussel, A. et al. (2003). Longitudinal monitoring of 2-long terminal repeat circles in peripheral blood mononuclear cells from patients with chronic HIV-1 infection. Aids, 17, 645–652.
Wu, Y. (2004). HIV-1 gene expression: Lessons from provirus and non-integrated DNA. Retrovirology, 1, 13.
Engelman, A., Englund, G., Orenstein, J. M., Martin, M. A., &␣Craigie, R. (1995). Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication. Journal of Virology, 69, 2729–2736.
Leavitt, A. D., Robles, G., Alesandro, N., & Varmus, H. E. (1996). Human immunodeficiency virus type 1 integrase mutants retain in␣vitro integrase activity yet fail to integrate viral DNA efficiently during infection. Journal of Virology, 70, 721–728.
Nakajima, N., Lu, R., & Engelman, A. (2001). Human immunodeficiency virus type 1 replication in the absence of integrase-mediated dna recombination: Definition of permissive and nonpermissive T-cell lines. Journal of Virology, 75, 7944–7955.
Saenz, D. T. et al. (2004). Unintegrated lentivirus DNA persistence and accessibility to expression in nondividing cells: Analysis with class I integrase mutants. Journal of Virology, 78, 2906–2920.
Nightingale, S. J. et al. (2006). Transient gene expression by nonintegrating lentiviral vectors. Molecular Therapy, 13, 1121–1132.
Loewen, N. et al. (2003). Comparison of wild-type and class I integrase mutant-FIV vectors in retina demonstrates sustained expression of integrated transgenes in retinal pigment epithelium. The Journal of Gene Medicine, 5, 1009–1017.
Vargas Jr., J., Gusella, G. L., Najfeld, V., Klotman, M. E., & Cara, A. (2004). Novel integrase-defective lentiviral episomal vectors for gene transfer. Human Gene Therapy, 15, 361–372.
Yanez-Munoz, R. J. et al. (2006). Effective gene therapy with nonintegrating lentiviral vectors. Nature Medicine, 12, 348–353.
Philippe, S. et al. (2006). Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in␣vitro and in␣vivo. Proceedings of the National Academy of Sciences of the USA, 103, 17684–17689.
Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H., & Verma, I. M. (1998). Development of a self-inactivating lentivirus vector. Journal of Virology, 72, 8150–8157.
Zufferey, R. et al. (1998). Self-inactivating lentivirus vector for safe and efficient in␣vivo gene delivery. Journal of Virology, 72, 9873–9880.
Iwakuma, T., Cui, Y., & Chang, L. J. (1999). Self-inactivating lentiviral vectors with U3 and U5 modifications. Virology, 261, 120–132.
Yu, S. F. et al. (1986). Self-inactivating retroviral vectors designed for transfer of whole genes into mammalian cells. Proceedings of the National Academy of Sciences of the USA, 83, 3194–3198.
Evans, J. T., & Garcia, J. V. (2000). Lentivirus vector mobilization and spread by human immunodeficiency virus. Human Gene Therapy, 11, 2331–2339.
Bukovsky, A. A., Song, J. P., & Naldini, L. (1999). Interaction of human immunodeficiency virus-derived vectors with wild-type virus in transduced cells. Journal of Virology, 73, 7087–7092.
Grunwald, T., Pedersen, F. S., Wagner, R., & Uberla, K. (2004). Reducing mobilization of simian immunodeficiency virus based vectors by primer complementation. The Journal of Gene Medicine, 6, 147–154.
Lucke, S., Grunwald, T., & Uberla, K. (2005). Reduced mobilization of Rev-responsive element-deficient lentiviral vectors. Journal of Virology, 79, 9359–9362.
Logan, A. C., Haas, D. L., Kafri, T., & Kohn, D. B. (2004). Integrated self-inactivating lentiviral vectors produce full-length genomic transcripts competent for encapsidation and integration. Journal of Virology, 78, 8421–8436.
Hanawa, H., Persons, D. A., & Nienhuis, A. W. (2005). Mobilization and mechanism of transcription of integrated self-inactivating lentiviral vectors. Journal of Virology, 79, 8410–8421.
Ma, H., & Kafri, T. (2004). A single-LTR HIV-1 vector optimized for functional genomics applications. Molecular Therapy, 10, 139–149.
Recillas-Targa, F., Valadez-Graham, V., & Farrell, C. M. (2004). Prospects and implications of using chromatin insulators in gene therapy and transgenesis. Bioessays, 26, 796–807.
Ramezani, A., Hawley, T. S., & Hawley, R. G. (2003). Performance- and safety-enhanced lentiviral vectors containing the human interferon-{beta} scaffold attachment region and the chicken {beta}-globin insulator. Blood, 101(12), 4717–4724.
Hino, S., Fan, J., Taguwa, S., Akasaka, K., & Matsuoka, M. (2004). Sea urchin insulator protects lentiviral vector from silencing by maintaining active chromatin structure. Gene Therapy, 11, 819–828.
Zufferey, R., Donello, J. E., Trono, D., & Hope, T. J. (1999). Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. Journal of Virology, 73, 2886–2892.
Kingsman, S. M., Mitrophanous, K., & Olsen, J. C. (2005). Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Therapy, 12, 3–4.
Schambach, A. et al. (2006). Woodchuck hepatitis virus post-transcriptional regulatory element deleted from X protein and promoter sequences enhances retroviral vector titer and expression. Gene Therapy, 13, 641–645.
Charneau, P., & Clavel, F. (1991). A single-stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract. Journal of Virology, 65, 2415–2421.
Charneau, P., Mirambeau, G., Roux, P., Paulous, S., Buc, H., & Clavel, F. (1994). HIV-1 reverse transcription. A termination step at the center of the genome. Journal of Molecular Biology, 241, 651–662.
Arhel, N., Munier, S., Souque, P., Mollier, K., & Charneau, P. (2006). Nuclear import defect of human immunodeficiency virus type 1 DNA flap mutants is not dependent on the viral strain or target cell type. Journal of Virology, 80, 10262–10269.
Arhel, N. J., Souquere-Besse, S., & Charneau, P. (2006). Wild-type and central DNA flap defective HIV-1 lentiviral vector genomes: Intracellular visualization at ultrastructural resolution levels. Retrovirology, 3, 38.
De Rijck, J., & Debyser, Z. (2006). The central DNA flap of the human immunodeficiency virus type 1 is important for viral replication. Biochemical and Biophysical Research Communications, 349, 1100–1110.
Zennou, V. et al. (2001). The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain. Nature Biotechnology, 19, 446–450.
Sirven, A. et al. (2000). The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. Blood, 96, 4103–4110.
Sirven, A. et al. (2001). Enhanced transgene expression in cord blood CD34(+)-derived hematopoietic cells, including developing T cells and NOD/SCID mouse repopulating cells, following transduction with modified trip lentiviral vectors. Molecular Therapy, 3, 438–448.
Pfeifer, A. et al. (2001). Transduction of liver cells by lentiviral vectors: Analysis in living animals by fluorescence imaging. Molecular Therapy, 3, 319–322.
Follenzi, A., Ailles, L. E., Bakovic, S., Geuna, M., & Naldini, L. (2000). Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nature Genetics, 25, 217–222.
Dvorin, J. D., Bell, P., Maul, G. G., Yamashita, M., Emerman, M., & Malim, M. H. (2002). Reassessment of the roles of integrase and the central DNA flap in human immunodeficiency virus type 1 nuclear import. Journal of Virology, 76, 12087–12096.
Limon, A., Nakajima, N., Lu, R., Ghory, H. Z., & Engelman, A. (2002). Wild-type levels of nuclear localization and human immunodeficiency virus type 1 replication in the absence of the central DNA flap. Journal of Virology, 76, 12078–12086.
Van Maele, B., De Rijck, J., De Clercq, E., & Debyser, Z. (2003). Impact of the central polypurine tract on the kinetics of human immunodeficiency virus type 1 vector transduction. Journal of Virology, 77, 4685–4694.
Reiser, J., Lai, Z., Zhang, X. Y., & Brady, R. O. (2000). Development of multigene and regulated lentivirus vectors. Journal of Virology, 74, 10589–10599.
Kafri, T., van Praag, H., Gage, F. H., & Verma, I. M. (2000). Lentiviral vectors: Regulated gene expression. Molecular Therapy, 1, 516–521.
Galimi, F. et al. (2005). Development of ecdysone-regulated lentiviral vectors. Molecular Therapy, 11, 142–148.
Gossen, M., & Bujard, H. (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proceedings of the National Academy of Sciences of the USA, 89, 5547–5551.
Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., & Bujard, H. (1995). Transcriptional activation by tetracyclines in mammalian cells. Science, 268, 1766–1769.
Vigna, E. et al. (2002). Robust and efficient regulation of transgene expression in␣vivo by improved tetracycline-dependent lentiviral vectors. Molecular Therapy, 5, 252–261.
Koponen, J. K. et al. (2003). Doxycycline-regulated lentiviral vector system with a novel reverse transactivator rtTA2S-M2 shows a tight control of gene expression in␣vitro and in␣vivo. Gene Therapy, 10, 459–466.
Haack, K. et al. (2004). Transactivator and structurally optimized inducible lentiviral vectors. Molecular Therapy, 10, 585–596.
Xu, K., Ma, H., McCown, T. J., Verma, I. M., & Kafri, T. (2001). Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Molecular Therapy, 3, 97–104.
Amar, L., Desclaux, M., Faucon-Biguet, N., Mallet, J., & Vogel, R. (2006). Control of small inhibitory RNA levels and RNA interference by doxycycline induced activation of a minimal RNA polymerase III promoter. Nucleic Acids Research, 34, e37.
Pluta, K., Luce, M. J., Bao, L., Agha-Mohammadi, S., & Reiser, J. (2005). Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. The Journal of Gene Medicine, 7, 803–817.
Urlinger, S., Baron, U., Thellmann, M., Hasan, M. T., Bujard, H., & Hillen, W. (2000). Exploring the sequence space for tetracycline-dependent transcriptional activators: Novel mutations yield expanded range and sensitivity. Proceedings of the National Academy of Sciences of the USA, 97, 7963–7968.
Vigna, E., Amendola, M., Benedicenti, F., Simmons, A. D., Follenzi, A., & Naldini, L. (2005). Efficient Tet-dependent expression of human factor IX in␣vivo by a new self-regulating lentiviral vector. Molecular Therapy, 11, 763–775.
Szulc, J., Wiznerowicz, M., Sauvain, M. O., Trono, D., & Aebischer, P. (2006). A versatile tool for conditional gene expression and knockdown. Nature Methods, 3, 109–116.
Agha-Mohammadi, S., O’Malley, M., Etemad, A., Wang, Z., Xiao, X., & Lotze, M. T. (2004). Second-generation tetracycline-regulatable promoter: Repositioned tet operator elements optimize transactivator synergy while shorter minimal promoter offers tight basal leakiness. Journal of Gene Medicine, 6, 817–828.
Stegmeier, F., Hu, G., Rickles, R. J., Hannon, G. J., & Elledge, S. J. (2005). A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proceedings of the National Academy of Sciences of the USA, 102, 13212–13217.
Wiznerowicz, M., & Trono, D. (2003). Conditional suppression of cellular genes: Lentivirus vector-mediated drug-inducible RNA interference. Journal of Virology, 77, 8957–8961.
Shin, K. J. et al. (2006). A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proceedings of the National Academy of Sciences of the USA, 103, 13759–13764.
Latta-Mahieu, M. et al. (2002). Gene transfer of a chimeric trans-activator is immunogenic and results in short-lived transgene expression. Human Gene Therapy, 13, 1611–1620.
Favre, D. et al. (2002). Lack of an immune response against the tetracycline-dependent transactivator correlates with long-term doxycycline-regulated transgene expression in nonhuman primates after intramuscular injection of recombinant adeno-associated virus. Journal of Virology, 76, 11605–11611.
Ginhoux, F. et al. (2004). HLA-A*0201-restricted cytolytic responses to the rtTA transactivator dominant and cryptic epitopes compromise transgene expression induced by the tetracycline on system. Molecular Therapy, 10, 279–289.
Lena, A. M., Giannetti, P., Sporeno, E., Ciliberto, G., & Savino, R. (2005). Immune responses against tetracycline-dependent transactivators affect long-term expression of mouse erythropoietin delivered by a helper-dependent adenoviral vector. The Journal of Gene Medicine, 7, 1086–1096.
Cockrell, A. S., Ma, H., Fu, K., McCown, T. J., & Kafri, T. (2006). A trans-lentiviral packaging cell line for high-titer conditional self-inactivating HIV-1 vectors. Molecular Therapy, 14, 276–284.
Karolewski, B. A., Watson, D. J., Parente, M. K., & Wolfe, J. H. (2003). Comparison of transfection conditions for a lentivirus vector produced in large volumes. Human Gene Therapy, 14, 1287–1296.
Segura, M. M., Kamen, A., & Garnier, A. (2006). Downstream processing of oncoretroviral and lentiviral gene therapy vectors. Biotechnology Advances, 24, 321–337.
Reiser, J. (2000). Production and concentration of pseudotyped HIV-1-based gene transfer vectors. Gene Therapy, 7, 910–913.
Baekelandt, V., Eggermont, K., Michiels, M., Nuttin, B., &␣Debyser, Z. (2003). Optimized lentiviral vector production and purification procedure prevents immune response after transduction of mouse brain. Gene Therapy, 10, 1933–1940.
Vogt, V. M. (1997). Retroviral virions and genomes. In J. M. Coffin, S. H. Hughes, & H. E. Varmus (Eds.), Retroviruses (p.␣28) Plainview NY: Cold Spring Harbor Laboratory Press.
Yu, J. H., & Schaffer, D. V. (2006). Selection of novel vesicular stomatitis virus glycoprotein variants from a peptide insertion library for enhanced purification of retroviral and lentiviral vectors. Journal of Virology, 80, 3285–3292.
Geraerts, M., Michiels, M., Baekelandt, V., Debyser, Z., &␣Gijsbers, R. (2005). Upscaling of lentiviral vector production by tangential flow filtration. Journal of Gene Medicine, 7, 1299–1310.
Delenda, C., & Gaillard, C. (2005). Real-time quantitative PCR for the design of lentiviral vector analytical assays. Gene Therapy, 12(Suppl 1), S36–S50.
Sastry, L., Johnson, T., Hobson, M. J., Smucker, B., & Cornetta, K. (2002). Titering lentiviral vectors: Comparison of DNA, RNA and marker expression methods. Gene Therapy, 9, 1155–1162.
Lizee, G., Aerts, J. L., Gonzales, M. I., Chinnasamy, N., Morgan, R. A., & Topalian, S. L. (2003). Real-time quantitative reverse transcriptase-polymerase chain reaction as a method for determining lentiviral vector titers and measuring transgene expression. Human Gene Therapy, 14, 497–507.
Geraerts, M., Willems, S., Baekelandt, V., Debyser, Z., & Gijsbers, R. (2006). Comparison of lentiviral vector titration methods. BMC Biotechnology, 6, 34.
Li, Y., Drone, C., Sat, E., & Ghosh, H. P. (1993). Mutational analysis of the vesicular stomatitis virus glycoprotein G for membrane fusion domains. Journal of Virology, 67, 4070–4077.
Konvalinka, J. et al. (1995). An active-site mutation in the human immunodeficiency virus type 1 proteinase (PR) causes reduced PR activity and loss of PR-mediated cytotoxicity without apparent effect on virus maturation and infectivity. Journal of Virology, 69, 7180–7186.
Bartz, S. R., Rogel, M. E., & Emerman, M. (1996). Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control. Journal of Virology, 70, 2324–2331.
Kaul, M., Yu, H., Ron, Y., & Dougherty, J. P. (1998). Regulated lentiviral packaging cell line devoid of most viral cis-acting sequences. Virology, 249, 167–174.
Kafri, T., van Praag, H., Ouyang, L., Gage, F. H., & Verma, I. M. (1999). A packaging cell line for lentivirus vectors. Journal of Virology, 73, 576–584.
Pacchia, A. L., Adelson, M. E., Kaul, M., Ron, Y., & Dougherty, J. P. (2001). An inducible packaging cell system for safe, efficient lentiviral vector production in the absence of HIV-1 accessory proteins. Virology, 282, 77–86.
Klages, N., Zufferey, R., & Trono, D. (2000). A stable system for the high-titer production of multiply attenuated lentiviral vectors. Molecular Therapy, 2, 170–176.
Farson, D. et al. (2001). A new-generation stable inducible packaging cell line for lentiviral vectors. Human Gene Therapy, 12, 981–997.
Ikeda, Y., Takeuchi, Y., Martin, F., Cosset, F. L., Mitrophanous, K., & Collins, M. (2003). Continuous high-titer HIV-1 vector production. Nature Biotechnology, 21, 569–572.
Ni, Y. et al. (2005). Generation of a packaging cell line for prolonged large-scale production of high-titer HIV-1-based lentiviral vector. Journal of Gene Medicine, 7, 818–834.
Strang, B. L., Ikeda, Y., Cosset, F. L., Collins, M. K., & Takeuchi, Y. (2004). Characterization of HIV-1 vectors with gammaretrovirus envelope glycoproteins produced from stable packaging cells. Gene Therapy, 11, 591–598.
Strang, B. L. et al. (2005). Human immunodeficiency virus type 1 vectors with alphavirus envelope glycoproteins produced from stable packaging cells. Journal of Virology, 79, 1765–1771.
Hansen, M. S., Smith, G. J. 3rd, Kafri, T., Molteni, V., Siegel, J. S., & Bushman, F. D. (1999). Integration complexes derived from HIV vectors for rapid assays in␣vitro. Nature Biotechnology, 17, 578–582.
Nyberg, K. et al. (2004). Workshop on long-term follow-up of participants in human gene transfer research. Molecular Therapy, 10, 976–980.
Escarpe, P. et al. (2003). Development of a sensitive assay for detection of replication-competent recombinant lentivirus in large-scale HIV-based vector preparations. Molecular Therapy, 8, 332–341.
Sastry, L. et al. (2003). Certification assays for HIV-1-based vectors: Frequent passage of gag sequences without evidence of replication-competent viruses. Molecular Therapy, 8, 830–839.
Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., &␣Conklin, D. S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Development, 16, 948–958.
Paul, C. P., Good, P. D., Winer, I., & Engelke, D. R. (2002). Effective expression of small interfering RNA in human cells. Nature Biotechnology, 20, 505–508.
Brummelkamp, T. R., Bernards, R., & Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550–553.
Xia, H., Mao, Q., Paulson, H. L., & Davidson, B. L. (2002). siRNA-mediated gene silencing in␣vitro and in␣vivo. Nature Biotechnology, 20, 1006–1010.
Du, T., & Zamore, P. D. (2005). microPrimer: The biogenesis and function of microRNA. Development, 132, 4645–4652.
Brummelkamp, T. R., Bernards, R., & Agami, R. (2002). Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell, 2, 243–247.
Abbas-Terki, T., Blanco-Bose, W., Deglon, N., Pralong, W., &␣Aebischer, P. (2002). Lentiviral-mediated RNA interference. Human Gene Therapy, 13, 2197–2201.
Qin, X. F., An, D. S., Chen, I. S., & Baltimore, D. (2003). Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proceedings of the National Academy of Sciences of the USA, 100, 183–188.
Tiscornia, G., Singer, O., Ikawa, M., & Verma, I. M. (2003). A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proceedings of the National Academy of Sciences of the USA, 100, 1844–1848.
Rubinson, D. A. et al. (2003). A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature Genetics, 33, 401–406.
Raoul, C. et al. (2005). Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS. Nature Medicine, 11, 423–428.
Ralph, G. S. et al. (2005). Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nature Medicine, 11, 429–433.
Singer, O. et al. (2005). Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nature Neuroscience, 8, 1343–1349.
Morris, K. V., & Rossi, J. J. (2006). Lentiviral-mediated delivery of siRNAs for antiviral therapy. Gene Therapy, 13, 553–558.
Tiscornia, G., Tergaonkar, V., Galimi, F., & Verma, I. M. (2004). CRE recombinase-inducible RNA interference mediated by lentiviral vectors. Proceedings of the National Academy of Sciences of the USA, 101, 7347–7351.
Ventura, A. et al. (2004). Cre-lox-regulated conditional RNA interference from transgenes. Proceedings of the National Academy of Sciences of the USA, 101, 10380–10385.
Zeng, Y., Cai, X., & Cullen, B. R. (2005). Use of RNA polymerase II to transcribe artificial microRNAs. Methods Enzymology, 392, 371–380.
Dickins, R. A. et al. (2005). Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nauture Genetics, 37, 1289–1295.
Berns, K. et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 428, 431–437.
Paddison, P. J. et al. (2004). A resource for large-scale RNA-interference-based screens in mammals. Nature, 428, 427–431.
Moffat, J. et al. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell, 124, 1283–1298.
Root, D. E., Hacohen, N., Hahn, W. C., Lander, E. S., &␣Sabatini, D. M. (2006). Genome-scale loss-of-function screening with a lentiviral RNAi library. Nature Methods, 3, 715–719.
Silva, J. M. et al. (2005). Second-generation shRNA libraries covering the mouse and human genomes. Nature Genetics, 37, 1281–1288.
Pfeifer, A., Ikawa, M., Dayn, Y., & Verma, I. M. (2002). Transgenesis by lentiviral vectors: Lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proceedings of the National Academy of Sciences of the USA, 99, 2140–2145.
Lois, C., Hong, E. J., Pease, S., Brown, E. J., & Baltimore, D. (2002). Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science, 295, 868–872.
Hamra, F. K. et al. (2002). Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proceedings of the National Academy of Sciences of the USA, 99, 14931–14936.
Hofmann, A. et al. (2003). Efficient transgenesis in farm animals by lentiviral vectors. EMBO Reports, 4, 1054–1060.
Whitelaw, C. B. et al. (2004). Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector. FEBS Letters, 571, 233–236.
Hofmann, A. et al. (2004). Generation of transgenic cattle by lentiviral gene transfer into oocytes. Biology of Reproduction, 71, 405–409.
Scott, B. B., & Lois, C. (2005). Generation of tissue-specific transgenic birds with lentiviral vectors. Proceedings of the National Academy of Sciences of the USA, 102, 16443–16447.
McGrew, M. J. et al. (2004). Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Reports, 5, 728–733.
Ralph, G. S., Binley, K., Wong, L. F., Azzouz, M., & Mazarakis, N. D. (2006). Gene therapy for neurodegenerative and ocular diseases using lentiviral vectors. Clinical Science (London), 110, 37–46.
Wong, L. F., Goodhead, L., Prat, C., Mitrophanous, K. A., Kingsman, S. M., & Mazarakis, N. D. (2006). Lentivirus-mediated gene transfer to the central nervous system: Therapeutic and research applications. Human Gene Therapy, 17, 1–9.
Miyoshi, H., Takahashi, M., Gage, F. H., & Verma, I. M. (1997). Stable and efficient gene transfer into the retina using an HIV-based lentiviral vector. Proceedings of the National Academy of Sciences of the USA, 94, 10319–10323.
Tschernutter, M. et al. (2005). Long-term preservation of retinal function in the RCS rat model of retinitis pigmentosa following lentivirus-mediated gene therapy. Gene Therapy, 12, 694–701.
Bemelmans, A. P. et al. (2006). Lentiviral gene transfer of RPE65 rescues survival and function of cones in a mouse model of Leber congenital amaurosis. PLoS Medicine, 3, e347.
Chang, A. H., & Sadelain, M. (2007). The genetic engineering of Hematopoietic stem cells: The rise of lentiviral vectors, the conundrum of the LTR, and the promise of lineage-restricted vectors. Molecular Therapy, 15(3), 445–456.
Miyoshi, H., Smith, K. A., Mosier, D. E., Verma, I. M., & Torbett, B. E. (1999). Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors. Science, 283, 682–686.
May, C. et al. (2000). Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature, 406, 82–86.
Pawliuk, R. et al. (2001). Correction of sickle cell disease in transgenic mouse models by gene therapy. Science, 294, 2368–2371.
Imren, S. et al. (2002). Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proceedings of the National Academy of Sciences of the USA, 99, 14380–14385.
Rivella, S., May, C., Chadburn, A., Riviere, I., & Sadelain, M. (2003). A novel murine model of Cooley anemia and its rescue by lentiviral-mediated human beta -globin gene transfer. Blood, 101, 2932–2939.
Levasseur, D. N., Ryan, T. M., Pawlik, K. M., & Townes, T. M. (2003). Correction of a mouse model of sickle cell disease: Lentiviral/antisickling beta-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood, 102, 4312–4319.
Puthenveetil, G. et al. (2004). Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood, 104, 3445–3453.
Malik, P., Arumugam, P. I., Yee, J. K., & Puthenveetil, G. (2005). Successful correction of the human Cooley’s anemia beta-thalassemia major phenotype using a lentiviral vector flanked by the chicken hypersensitive site 4 chromatin insulator. Annals of the New York Academy of Sciences, 1054, 238–249.
Mostoslavsky, G., Fabian, A. J., Rooney, S., Alt, F. W., & Mulligan, R. C. (2006). Complete correction of murine Artemis immunodeficiency by lentiviral vector-mediated gene transfer. Proceedings of the National Academy of Sciences of the USA, 103, 16406–16411.
Levine, B. L. et al. (2006). Gene transfer in humans using a conditionally replicating lentiviral vector. Proceedings of the National Academy of Sciences of the USA, 103, 17372–17377.
Bank, A., Dorazio, R., & Leboulch, P. (2005). A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia. Annals of the New York Academy of Sciences, 1054, 308–316.
Acknowledgement
The authors of this review apologize to investigators whose studies were not described in this manuscript, or were inadequately presented.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cockrell, A.S., Kafri, T. Gene delivery by lentivirus vectors. Mol Biotechnol 36, 184–204 (2007). https://doi.org/10.1007/s12033-007-0010-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12033-007-0010-8