Skip to main content
Log in

Comparison of Alexa Fluor® and CyDye for practical DNA microarray use

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Microarrays are a powerful tool for comparison and understanding of gene expression levels in healthy and diseased states. The method relies upon the assumption that signals from microarray features are a reflection of relative gene expression levels of the cell types under investigation. It has previously been reported that the classical fluorescent dyes used for microarray technology, Cy3 and Cy5, are not ideal due to the decreased stability and fluorescence intensity of the Cy5 dye relative to the Cy3, such that dye bias is an accepted phenomena necessitating dye swap experimental protocols and analysis of differential dye affects. The incentive to find new fluorophores is based on alleviating the problem of dye bias through synonymous performance between counterpart dyes. Alexa Fluor® 555 and Alexa Fluor® 647 are increasingly promoted as replacements for CyDyein microarray experiments. Performance relates to the molecular and steric similarities, which will vary for each new pair of dyes as well as the spectral integrity for the specific application required. Comparative analysis of the performance of these two competitive dye pairs in practical microarray applications is warranted towards this end. The findings of our study showed that both dye pairs were comparable but that conventional CyDye resulted in significantly higher signal intensities (P < 0.05) and signal minus background levels (P < 0.05) with no significant difference in background values (P > 0.05). This translated to greater levels of differential gene expression with CyDye than with the Alexa Fluor® counterparts. However, CyDye fluorophores and in particular Cy5, were found to be less photostable over time and following repeated scans in microarray experiments. These results suggest that precautions against potential dye affects will continue to be necessary and that no one dye pair negates this need.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 

Similar content being viewed by others

References

  1. Al-Mulla, F., Al-Tamimi, R., & Bitar, M. S. (2004). Comparison of two probe preparation methods using long oligonucleotide microarrays. BioTechniques, 37, 827–833.

    PubMed  CAS  Google Scholar 

  2. Amersham Biosciences (2002). Microarray handbook. Buckinghamshire, UK: . Amersham Biosciences Corp.

  3. Berlier, J. E., Rothe, A., Buller, G., Bradford, J., Gray, D. R., Filanoski, B. J., Telford, W. G., & Yue, S., et al. (2003). Quantitative comparison of long-wavelength Alexa Fluor® dyes to Cy dyes: fluorescence of the dyes and their bioconjugates. Journal of Histochemistry and Cytochemistry, 51, 1699–1712.

    PubMed  CAS  Google Scholar 

  4. Cox, W. G., & Singer, V. L. (2004). Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling. BioTechniques, 36, 114–122.

    PubMed  CAS  Google Scholar 

  5. Cox, W. G., Beaudet, M. P., Agnew, J. Y., & Ruth, J. L. (2004). Possible sources of dye-related signal correlation bias in two-color DNA microarray analysis. Analytical Biochemistry, 331, 243–254.

    Article  PubMed  CAS  Google Scholar 

  6. Dobbin, K. K., Kawasaki, E. S., Petersen, D. W., & Simon, R. M. (2005). Characterizing dye bias in microarray experiments. Bioinformatics, 21, 2430–2437.

    Article  PubMed  CAS  Google Scholar 

  7. Forster, T., Costa, Y., Roy, D., Cooke, H. J., & Maratou, K. (2004). Triple-target microarray experiments: a novel experimental strategy. B.M.C. Genomics, 5, e13.

    Article  Google Scholar 

  8. Gruber, H. J., Hahn, C. D., Kada, G., Riener, C. K., Harms, G. S., Ahrer, W., Dax, T. G., & Knaus, H. G. (2000). Anomalous fluorescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescence loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin. Bioconjugate Chemistry, 11, 696–704.

    Article  PubMed  CAS  Google Scholar 

  9. Lam, C. W., Cheung, K. K., Luk, N. M., Chan, S. W., Lo, K. K., & Tong, S. F. (2005). DNA-based diagnosis of xeroderma pigmentosum group C by Whole-genome scan using single-nucleotide polymorphism microarray. Journal of Investigative Dermatology, 124, 87–91.

    Article  PubMed  CAS  Google Scholar 

  10. Nguyen, D. V., Arpat, A. B., Wang, N., & Carroll, R. J. (2002). DNA microarray experiments: biological and technical aspects. Biometrics, 58, 701–717.

    Article  PubMed  Google Scholar 

  11. Panchuk-Voloshina, N., Haugland, R. P., Bishop-Stewart, J., Bhalgat, M. K., Millard, P. J., Mao, F., Leung, W. Y., & Haugland, R. P. (1999). Alexa Dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates. Journal of Histochemistry and Cytochemistry, 47, 1179–1188.

    PubMed  CAS  Google Scholar 

  12. Peeters, J. K., & Van der Spek, P. J. (2005). Growing applications and advancements in microarray technology and analysis tools. Cell Biochemistry and Biophysics, 43, 149–166.

    Article  PubMed  CAS  Google Scholar 

  13. Shang, S., Chen, G., Wu, Y., Du, L., & Zhao, Z. (2005). Rapid diagnosis of bacterial sepsis with PCR amplification and microarray hybridization in 16S rRNA gene. Pediatric Research, 58, 143–148.

    Article  PubMed  CAS  Google Scholar 

  14. Staal, Y. C., van Herwijnen M. H. M., van Schooten F. J., & van Delft J. H. M. (2005). Application of four dyes in gene expression analysis by microarrays. BMC Genomics, 6, 101–113.

    Article  PubMed  CAS  Google Scholar 

  15. Takahashi, M., Yang, X. J., McWhinney, S., Sano, N., Eng, C., Kagawa, S., Teh, B. T., & Kanayama, H. O. (2005). cDNA microarray analysis assists in diagnosis of malignant intrarenal pheochromocytoma originally masquerading as a renal cell carcinoma. Journal of Medical Genetics, 42, e48.

    Article  PubMed  CAS  Google Scholar 

  16. Tseng, G. C., Oh, M. K., Rohlin, L., Liao, J. C., & Wong, W. H. (2001). Issues in cDNA microarray analysis: quality filtering, channel normalization, models of variations and assessment of gene effects. Nucleic Acids Research, 29, 2549–2557.

    Article  PubMed  CAS  Google Scholar 

  17. Wildsmith, S. E., Archer, G. E., Winkley, A. J., Lane, P. W., & Bugelski, P. J. (2001). Maximization of signal derived from cDNA microarrays. BioTechniques, 30, 202–208.

    PubMed  CAS  Google Scholar 

  18. Yu, J., Othman, M. I., Farjo, R., Zareparsi, S., MacNee, S. P., Yoshida, S., & Swaroop, A. (2002). Evaluation and optimization of procedures for target labeling and hybridization of cDNA microarrays. Molecular Vision, 8, 130–137.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Laboratory for Molecular Genetics at the Western Australian Institute for Medical Research for their donation of HEK cells and the Tumour Immunology Group at the School of Medicine and Pharmacology of The University of Western Australia who donated JU77 cells. We gratefully thank and acknowledge Lotterywest for their funding of the LSMAF and this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel R. Swanson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballard, J.L., Peeva, V.K., deSilva, C.J.S. et al. Comparison of Alexa Fluor® and CyDye for practical DNA microarray use. Mol Biotechnol 36, 175–183 (2007). https://doi.org/10.1007/s12033-007-0006-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-0006-4

Keywords

Navigation