Skip to main content
Log in

Enhanced secretion of adhesive recognition sequence containing hirudin III mutein in E. coli

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

It has been previously shown that Escherichia coli l-asparaginase II (l-ASP) signal peptide is capable of being utilized to direct extracellular secretion of hirudin III (HV3) in shake flask. In this study HV3 muteins R33G34D35(S36)-HV3 were generated by introduction of adhesive recognition sequence RGD(S) into the non-functional region of HV3. The resultant recombinants were cultivated on 30 l bioreactor scale using l-ASP signal peptide expression system and the optimized fed-batch cultivation was well established. After cultivation for approximately 11 h the secreted product accumulated up to ∼1 g l−1, which means 17-fold increase in productivity compared to initial expression in shake flask. N-terminal analysis, pI measurement, and MALDI mass spectral analysis on mutein R33G34D35S36-HV3 confirmed the authenticity of the product. Compared to wild-type HV3 and R33G34D35HV3, the mutein R33G34D35S36-HV3 exhibits the improved pharmacological activity. Collectively, a novel secretion strategy using l-ASP signal peptide for the rapid, efficient and cost-effective production of HV3 mutein possessing improved pharmacological activity on bioreactor scale has been well established. Using this expression system downstream processing becomes very simple because secreted product is mature, soluble, active, and without N-terminal extension of Met, which is quite critical for most therapeutic protein to reduce the side effect in clinic use. Thus, it provides a promising alternative for extracelluar production of other difficult-to-express protein for biopharmaceutical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HV3:

Hirudin III

ATU:

Antithrombin units

l-ASP:

l-Asparaginase II

PCR:

Polymerase chain reaction

IC50 :

Concentration of an inhibitor at which 50% inhibition of the response is seen

RGD(S):

Adhesive recognition sequence Arg-Gly-Asp-(Ser)

HPLC:

High performance liquid chromatography

PAGE:

Polyacrylamide gel electrophoresis

pI:

Isoelectric point

MALDI:

Matrix-assisted laser desorption/ionization

References

  1. Bender, E., Vogel, R., Koller, K. P., & Engels, J. (1990). Synthesis and secretion of hirudin by Streptomyces lividans. Applied Microbiology and Biotechnology, 34, 203–207.

    Article  PubMed  CAS  Google Scholar 

  2. Dodt, J., Schmitz, T., Schaefer, T., & Bergman, C. (1986). Expression, secretion and processing of hirudin in E. coli using the alkaline phosphatase signal sequence. FEBS Letters, 202, 373–377.

    Article  PubMed  CAS  Google Scholar 

  3. Giddings, G., Allison, G., Brooks, D., & Carter, A. (2000). Transgenic plants as factories for biopharmaceuticals. Nature Biotechnology, 18, 1151–1155.

    Article  PubMed  CAS  Google Scholar 

  4. Gumpert, J., & Hoischen, C. (1998). Use of cell wall-less bacteria (l-forms) for efficient expression and secretion of heterologous gene products. Current Opinion in Biotechnology, 9, 506–509.

    Article  PubMed  CAS  Google Scholar 

  5. Jennings, M. P., & Beacham, I. R. (1990). Analysis of the Escherichia coli gene encoding l-asparaginase II, ansB, and its regulation by cyclic AMP receptor and FNR proteins. Journal of Bacteriology, 172, 1491–1498.

    PubMed  CAS  Google Scholar 

  6. Kim, M. D., Kang, H. A., Rhee, S. K., & Seo, J. H. (2001). Effects of methanol on expression of an anticoagulant hirudin in recombinant Hansenula polymorpha. Journal of Industrial Microbiology and Biotechnology, 27, 58–61.

    Article  PubMed  CAS  Google Scholar 

  7. Kim, M. D., Lee, T. H., Lim, H. K., & Seo, J. H. (2004). Production of antithrombotic hirudin in GAL1-disrupted Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 65, 259–262.

    PubMed  CAS  Google Scholar 

  8. Kleist, S., Miksch, G., Hitzmann, B., Arndt, M., Friehs, K., & Flaschel, E. (2003). Optimization of the extracellular production of a bacterial phytase with Escherichia coli by using different fed-batch fermentation strategies. Applied Microbiology and Biotechnology, 61, 456–462.

    PubMed  CAS  Google Scholar 

  9. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  PubMed  CAS  Google Scholar 

  10. Lam, T. L., Wong, R. S., & Wong, W. K. (1997). Enhancement of extracellular production of a Cellulomonas fimi exoglucanase in Escherichia coli by the reduction of promoter strength. Enzyme and Microbial Technology, 20, 482–488.

    Article  PubMed  CAS  Google Scholar 

  11. Lazarus, R. A., & McDowell, R. S. (1993). Structural and functional aspects of RGD-containing protein antagonists of glycoprotein IIb-IIIa. Current Opinion in Biotechnology, 4, 438–445.

    Article  PubMed  CAS  Google Scholar 

  12. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry, 193, 265–275.

    PubMed  CAS  Google Scholar 

  13. Marki, W. E., & Wallis, R. B. (1990). The anticoagulant and antithrombotic properties of hirudins. Thrombosis and Haemostasis, 64, 344–348.

    PubMed  CAS  Google Scholar 

  14. Mendoza-Vega, O., Hebert, C., & Brown, S. W. (1994). Production of recombinant hirudin by high cell density fed-batch cultivations of a Saccharomyces cerevisiae strain: Physiological considerations during the bioprocess design. Journal of Biotechnology, 32, 249–259.

    Article  PubMed  CAS  Google Scholar 

  15. Pugsley, A. P. (1993). The complete general secretory pathway in gram-negative bacteria. Microbiological Reviews, 57, 50–108.

    PubMed  CAS  Google Scholar 

  16. Radzio, R., & Kuck, U. (1997). Efficient synthesis of the blood-coagulation inhibitor hirudin in the filamentous fungus Acremonium chrysogenum. Applied Microbiology and Biotechnology, 48, 58–65.

    Article  PubMed  CAS  Google Scholar 

  17. Riehl-Bellon, N., Carvallo, D., Acker, M., Van Dorsselaer, A., Marquet, M., Loison, G., Lemoine, Y., Brown, S. W., Courtney, M., & Roitsch, C. (1989). Purification and biochemical characterization of recombinant hirudin produced by Saccharomyces cerevisiae. Biochemistry, 28, 2941–2949.

    Article  PubMed  CAS  Google Scholar 

  18. Rosenfeld, S. A., Nadeau, D., Tirado, J., Hollis, G. F., Knabb, R. M., & Jia, S. (1996). Production and purification of recombinant hirudin expressed in the methylotrophic yeast Pichia pastoris. Protein Expression and Purification, 8, 476–482.

    Article  PubMed  CAS  Google Scholar 

  19. Rydel, T. J., Ravichandran, K. G., Tulinsky, A., Bode, W., Huber, R., Roitsch, C., & Fenton, J. W., II (1990). The structure of a complex of recombinant hirudin and human alpha-thrombin. Science, 249, 277–280.

    Article  PubMed  CAS  Google Scholar 

  20. Rydel, T. J., Tulinsky, A., Bode, W., & Huber, R. (1991). Refined structure of the hirudin-thrombin complex. Journal of Molecular Biology, 221, 583–601.

    Article  PubMed  CAS  Google Scholar 

  21. Tan, S., Wu, W., Liu, J., Kong, Y., Pu, Y., & Yuan, R. (2002). Efficient expression and secretion of recombinant hirudin III in E. coli using the l-asparaginase II signal sequence. Protein Expression and Purification, 25, 430–436.

    Article  PubMed  CAS  Google Scholar 

  22. Yamada, K. M. (1991). Adhesive recognition sequences. The Journal of Biological Chemistry, 266, 12809–12812.

    PubMed  CAS  Google Scholar 

  23. Yan, X., Wang, X., Zhang, X., & Zhang, Q. (2004). Gastrointestinal absorption of recombinant hirudin-2 in rats. The Journal of Pharmacology and Experimental Therapeutics, 308, 774–779.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Natural Science Foundation of China, Grant Number: 30000214 and Huo Ying-Dong Scientific Research Foundation, Grant Number: 81032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhua Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, S., Wu, W., Li, X. et al. Enhanced secretion of adhesive recognition sequence containing hirudin III mutein in E. coli . Mol Biotechnol 36, 1–8 (2007). https://doi.org/10.1007/s12033-007-0002-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-007-0002-8

Keywords

Navigation