Skip to main content

Advertisement

Log in

MLKL regulates radiation-induced death in breast cancer cells: an interplay between apoptotic and necroptotic signals

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Resistance to caspase-dependent apoptosis is often responsible for treatments failure in cancer. Necroptosis is a type of programmed necrosis that occurs under caspase-deficient conditions that could overcome apoptosis resistance. Our purpose was to investigate the interrelationship between apoptotic and necroptotic death pathways and their influence on the response of breast cancer cells to radiotherapy in vitro. Human BC cell lines MCF-7 and MDA-MB-231 were treated with ionizing radiation, and then several markers of apoptosis, necroptosis, and survival were assessed in the presence and absence of necroptosis inhibition. MLKL knockdown was achieved by siRNA transfection. Our main findings emphasize the role of necroptosis in cellular response to radiation represented in the dose- and time-dependent elevated expression of necroptotic markers RIPK1, RIPK3, and MLKL. Knockdown of necroptotic marker MLKL by siRNA led to a significant elevation in MDA-MB-231 and MCF-7 survival with a dose modifying factor (DMF) of 1.23 and 1.61, respectively. Apoptotic markers Caspase 8 and TRADD showed transitory or delayed upregulation, indicating that apoptosis was not the main mechanism by which cells respond to radiation exposure. Apoptotic markers also showed a significant elevation following MLKL knockdown, suggesting its role either as a secondary or death alternative pathway. The result of our study emphasizes the critical role of the necroptotic pathway in regulating breast cancer cells responses to radiotherapy and suggests a promising utilization of its key modulator, MLKL, as a treatment strategy to improve the response to radiotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  CAS  PubMed  Google Scholar 

  2. Haussmann J, Corradini S, Nestle-Kraemling C, Bölke E, Njanang FJD, Tamaskovics B, Orth K, Ruckhaeberle E, Fehm T, Mohrmann S, Simiantonakis I, Budach W, Matuschek C. Recent advances in radiotherapy of breast cancer. Radiat Oncol. 2021;15(1):71. https://doi.org/10.1186/s13014-020-01501-x.

    Article  Google Scholar 

  3. Busato F, Khouzai BE, Mognato M. Biological mechanisms to reduce radioresistance and increase the efficacy of radiotherapy: state of the art. Int J Mol Sci. 2022;23(18):10211. https://doi.org/10.3390/ijms231810211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu X, Zhou M, Mei L, Ruan J, Hu Q, Peng J, et al. Key roles of necroptotic factors in promoting tumor growth. Oncotarget. 2016;7(16):22219–33.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25(3):486–541. https://doi.org/10.1038/s41418-017-0012-4.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jiao Y, Cao F, Liu H. Radiation-induced cell death and its mechanisms. Health Phys. 2022;123(5):376–86. https://doi.org/10.1097/hp.0000000000001601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McCall K. Genetic control of necrosis—another type of programmed cell death. Curr Opin Cell Biol. 2010;22(6):882–8. https://doi.org/10.1016/j.ceb.2010.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christofferson DE, Yuan J. Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol. 2010;22(2):263–8. https://doi.org/10.1016/j.ceb.2009.12.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2021;148(1–2):213–27. https://doi.org/10.1016/j.cell.2011.11.031.

    Article  CAS  Google Scholar 

  10. Onyeagucha B, Subbarayalu P, Abdelfattah N, Rajamanickam S, Timilsina S, Guzman R, et al. Novel post-transcriptional and post-translational regulation of pro-apoptotic protein BOK and anti-apoptotic protein Mcl-1 determine the fate of breast cancer cells to survive or die. Oncotarget. 2017;8(49):85984–96. https://doi.org/10.18632/oncotarget.20841.

    Article  PubMed  PubMed Central  Google Scholar 

  11. McCormick KD, Ghosh A, Trivedi S, Wang L, Coyne CB, Ferris RL, et al. Innate immune signaling through differential RIPK1 expression promote tumor progression in head and neck squamous cell carcinoma. Carcinogenesis. 2016;37(5):522–9. https://doi.org/10.1093/carcin/bgw032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Strilic B, Yang L, Albarrán-Juárez J, Wachsmuth L, Han K, Müller UC, et al. Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis. Nature. 2016;536(7615):215–8. https://doi.org/10.1038/nature19076.

    Article  CAS  PubMed  Google Scholar 

  13. Feng X, Song Q, Yu A, Tang H, Peng Z, Wang X. Receptor-interacting protein kinase 3 is a predictor of survival and plays a tumor suppressive role in colorectal cancer. Neoplasma. 2015;62(4):592–601. https://doi.org/10.4149/neo_2015_071.

    Article  CAS  PubMed  Google Scholar 

  14. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-∆∆C(T)) Method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  15. Ngoka LC. Sample prep for proteomics of breast cancer: proteomics and gene ontology reveal dramatic differences in protein solubilization preferences of radioimmunoprecipitation assay and urea lysis buffers. Proteome Sci. 2008;6:30. https://doi.org/10.1186/1477-5956-6-30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, et al. Role of metabolism in cancer cell radioresistance and radiosensitization methods. J Exp Clin Cancer Res. 2018;37(1):87. https://doi.org/10.1186/s13046-018-0758-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  18. Fulda S. Targeting IAP proteins in combination with radiotherapy. Radiat Oncol. 2015;10(1):1–4.

    Article  CAS  Google Scholar 

  19. Gu L, Zhu N, Zhang H, Durden DL, Feng Y, Zhou M. Regulation of XIAP translation and induction by MDM2 following irradiation. Cancer Cell. 2009;15(5):363–75. https://doi.org/10.1016/j.ccr.2009.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vince JE, Pantaki D, Feltham R, Mace PD, Cordier SM, Schmukle AC, et al. TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (TNF) to efficiently activate nf-{kappa}b and to prevent TNF-induced apoptosis. J Biol Chem. 2009;284(51):35906–15. https://doi.org/10.1074/jbc.M109.072256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Poppelmann B, Klimmek K, Strozyk E, Voss R, Schwarz T, Kulms D. NF{kappa}B-dependent down-regulation of tumor necrosis factor receptor-associated proteins contributes to interleukin-1-mediated enhancement of ultraviolet B-induced apoptosis. J Biol Chem. 2005;280(16):15635–43. https://doi.org/10.1074/jbc.M413006200.

    Article  CAS  PubMed  Google Scholar 

  22. Fianco G, Contadini C, Ferri A, Cirotti C, Stagni V, Barila D. Caspase-8: a novel target to overcome resistance to chemotherapy in glioblastoma. Int J Mol Sci. 2018;19(12):3798. https://doi.org/10.3390/ijms19123798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moses LB, Abu Bakar MF, Mamat H, Aziz ZA. Unfermented freeze-dried leaf extract of tongkat ali (Eurycoma longifolia Jack.) induced cytotoxicity and apoptosis in MDA-MB-231 and MCF-7 Breast Cancer Cell Lines. Evid Based Complement Alternat Med. 2021;2021:8811236. https://doi.org/10.1155/2021/8811236.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Xu W, Fang F, Wang Y, Qin L, Han Y, Huang Y, et al. Co-overexpression of TRAIL and Smac sensitizes MDA-MB-231 cells to radiation through apoptosis depending on mitochondrial pathway. Radiat Environ Biophys. 2022;61(1):37–48. https://doi.org/10.1007/s00411-021-00961-3.

    Article  CAS  PubMed  Google Scholar 

  25. Füllsack S, Rosenthal A, Wajant H, Siegmund D. Redundant and receptor-specific activities of TRADD, RIPK1 and FADD in death receptor signaling. Cell Death Dis. 2019;10(2):122. https://doi.org/10.1038/s41419-019-1396-5.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Han JH, Park J, Kang TB, Lee KH. Regulation of caspase-8 activity at the crossroads of pro-inflammation and anti-inflammation. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22073318.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yu Z, Efstathiou NE, Correa V, Chen X, Ishihara K, Iesato Y, et al. Receptor interacting protein 3 kinase, not 1 kinase, through MLKL-mediated necroptosis is involved in UVA-induced corneal endothelium cell death. Cell Death Discov. 2021;7(1):366. https://doi.org/10.1038/s41420-021-00757-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baidya R, Gautheron J, Crawford DHG, Wang H, Bridle KR. Inhibition of MLKL attenuates necroptotic cell death in a murine cell model of ischaemia injury. J Clin Med. 2021. https://doi.org/10.3390/jcm10020212.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Dong Y, Sun Y, Huang Y, Fang X, Sun P, Dwarakanath B, et al. Depletion of MLKL inhibits invasion of radioresistant nasopharyngeal carcinoma cells by suppressing epithelial-mesenchymal transition. Ann Transl Med. 2019;7(23):741. https://doi.org/10.21037/atm.2019.11.104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qu Y, Shi J, Tang Y, Zhao F, Li S, Meng J, et al. MLKL inhibition attenuates hypoxia-ischemia induced neuronal damage in developing brain. Exp Neurol. 2016;279:223–31.

    Article  CAS  PubMed  Google Scholar 

  31. Liu Z, Dagley LF, Shield-Artin K, Young SN, Bankovacki A, Wang X, et al. Oligomerization-driven MLKL ubiquitylation antagonizes necroptosis. EMBO J. 2021;40(23):e103718. https://doi.org/10.15252/embj.2019103718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tian T. MCF-7 cells lack the expression of caspase-3. Int J Biol Macromol. 2023;15(231):123310. https://doi.org/10.1016/j.ijbiomac.2023.123310.

    Article  CAS  Google Scholar 

  33. Jänicke RU. MCF-7 breast carcinoma cells do not express caspase-3. Breast Cancer Res Treat. 2009;117(1):219–21. https://doi.org/10.1007/s10549-008-0217-9.

    Article  PubMed  Google Scholar 

  34. Wang J, Liu N, Su Q, Lv Y, Yang C, Zhan H. Green synthesis of gold nanoparticles and study of their inhibitory effect on bulk cancer cells and cancer stem cells in breast carcinoma. Nanomaterials. 2022;12(19):3324. https://doi.org/10.3390/nano12193324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang S, Zhou Q, Yang X. Caspase-3 status is a determinant of the differential responses to genistein between MDA-MB-231 and MCF-7 breast cancer cells. Biochem Biophys Acta. 2007;1773(6):903–11. https://doi.org/10.1016/j.bbamcr.2007.03.021.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Y, Zhao M, He S, Luo Y, Zhao Y, Cheng J, Gong Y, Xie J, Wang Y, Hu B, Tian L, Liu X, Li C, Huang Q. Necroptosis regulates tumor repopulation after radiotherapy via RIP1/RIP3/MLKL/JNK/IL8 pathway. J Exp Clin Cancer Res. 2019;38(1):461. https://doi.org/10.1186/s13046-019-1423-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, S. E. E., M. I. M; Methodology, S. E. E, A. M. H, F. A. R. I., and M. I. M.; Validation, S. E. E, K. F. A and F. A. R. I; Investigations, S. E. E., K. F. A., A. M. H., and F. A. R. I; data analysis, S. E. E. and M. I. M; Original draft preparation, S. E. E. A. M. H and K. F. A.; Manuscript final revision S. E. E. and M. I. M.

Corresponding author

Correspondence to Shaymaa E. El Feky.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Feky, S.E., Fakhry, K.A., Hussain, A.M. et al. MLKL regulates radiation-induced death in breast cancer cells: an interplay between apoptotic and necroptotic signals. Med Oncol 41, 172 (2024). https://doi.org/10.1007/s12032-024-02415-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02415-4

Keywords

Navigation