Skip to main content

Advertisement

Log in

Highlighting the role of long non-coding RNA (LncRNA) in multiple myeloma (MM) pathogenesis and response to therapy

  • Review
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Transcripts longer than 200 nucleotides that are not translated into proteins are known as long non-coding RNAs, or lncRNAs. Now, they are becoming more significant as important regulators of gene expression, and as a result, of many biological processes in both healthy and pathological circumstances, such as blood malignancies. Through controlling alternative splicing, transcription, and translation at the post-transcriptional level, lncRNAs have an impact on the expression of genes. In multiple myeloma (MM), the majority of lncRNAs is elevated and promotes the proliferation, adhesion, drug resistance and invasion of MM cells by blocking apoptosis and altering the tumor microenvironment (TME). To control mRNA splicing, stability, and translation, they either directly attach to the target mRNA or transfer RNA-binding proteins (RBPs). By expressing certain miRNA-binding sites that function as competitive endogenous RNAs (ceRNAs), most lncRNAs mimic the actions of miRNAs. Here, we highlight lncRNAs role in the MM pathogenesis with emphasize on their capacity to control the molecular mechanisms known as “hallmarks of cancer,” which permit earlier tumor initiation and progression and malignant cell transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Rodriguez-Otero P, Paiva B, San-Miguel JF. Roadmap to cure multiple myeloma. Cancer Treat Rev. 2021;100:102284. https://doi.org/10.1016/j.ctrv.2021.102284.

    Article  PubMed  Google Scholar 

  2. Rajkumar SV. Multiple myeloma: every year a new standard? Hematol Oncol. 2019;37(1):62–5. https://doi.org/10.1002/hon.2586.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kyle RA, Rajkumar SV. Multiple myeloma. Blood. 2008;111(6):2962–72. https://doi.org/10.1182/blood-2007-10-078022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kazandjian D. Multiple myeloma epidemiology and survival: a unique malignancy. Semin Oncol. 2016;43(6):676–81. https://doi.org/10.1053/j.seminoncol.2016.11.004.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Firth J. Haematology: multiple myeloma. Clin Med (Lond). 2019;19(1):58–60. https://doi.org/10.7861/clinmedicine.19-1-58.

    Article  PubMed  Google Scholar 

  6. Callander NS, Baljevic M, Adekola K, Anderson LD, Campagnaro E, Castillo JJ, Costello C, Devarakonda S, Elsedawy N, Faiman M, Garfall A, Godby K, Hillengass J, Holmberg L, Htut M, Huff CA, Hultcrantz M, Kang Y, Larson S, Liedtke M, Martin T, Omel J, Sborov D, Shain K, Stockerl-Goldstein K, Weber D, Berardi RA, Kumar R, Kumar SK. NCCN Guidelines® Insights: multiple Myeloma, version 32022. J Natl Compr Canc Netw. 2022;20(1):8–19. https://doi.org/10.6004/jnccn.2022.0002.

    Article  PubMed  Google Scholar 

  7. C. Yang, Y. Liang, J. Shu, S. Wang, Y. Hong, K. Chen, M. Sun, Long non‑coding RNAs in multiple myeloma. Int J Oncol. 2023. 62(6). https://doi.org/10.3892/ijo.2023.5517.

  8. Cui YS, Song YP, Fang BJ. The role of long non-coding RNAs in multiple myeloma. Eur J Haematol. 2019;103(1):3–9. https://doi.org/10.1111/ejh.13237.

    Article  CAS  PubMed  Google Scholar 

  9. Amodio N, Di Martino MT, Neri A, Tagliaferri P, Tassone P. Non-coding RNA: a novel opportunity for the personalized treatment of multiple myeloma. Expert Opin Biol Ther. 2013;13(Suppl 1):S125–37. https://doi.org/10.1517/14712598.2013.796356.

    Article  CAS  PubMed  Google Scholar 

  10. Wong KY, Chim CS. DNA methylation of tumor suppressor protein-coding and non-coding genes in multiple myeloma. Epigenomics. 2015;7(6):985–1001. https://doi.org/10.2217/epi.15.57.

    Article  CAS  PubMed  Google Scholar 

  11. Sedlarikova L, Gromesova B, Kubaczkova V, Radova L, Filipova J, Jarkovsky J, Brozova L, Velichova R, Almasi M, Penka M, Bezdekova R, Stork M, Adam Z, Pour L, Krejci M, Kuglík P, Hajek R, Sevcikova S. Deregulated expression of long non-coding RNA UCA1 in multiple myeloma. Eur J Haematol. 2017;99(3):223–33. https://doi.org/10.1111/ejh.12908.

    Article  CAS  PubMed  Google Scholar 

  12. David A, Zocchi S, Talbot A, Choisy C, Ohnona A, Lion J, Cuccuini W, Soulier J, Arnulf B, Bories JC, Goodhardt M, Garrick D. The long non-coding RNA CRNDE regulates growth of multiple myeloma cells via an effect on IL6 signalling. Leukemia. 2021;35(6):1710–21. https://doi.org/10.1038/s41375-020-01034-y.

    Article  CAS  PubMed  Google Scholar 

  13. Wu L, Xia L, Chen X, Ruan M, Li L, Xia R. Long non-coding RNA LINC01003 suppresses the development of multiple myeloma by targeting miR-33a-5p/PIM1 axis. Leukemia Res. 2021;106:106565. https://doi.org/10.1016/j.leukres.2021.106565.

    Article  CAS  Google Scholar 

  14. Tong J, Xu X, Zhang Z, Ma C, Xiang R, Liu J, Xu W, Wu C, Li J, Zhan F, Wu Y, Yan H. Hypoxia-induced long non-coding RNA DARS-AS1 regulates RBM39 stability to promote myeloma malignancy. Haematologica. 2020;105(6):1630–40. https://doi.org/10.3324/haematol.2019.218289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun XQ, Bi FQ, Cui X. Reaserch progress on non-coding RNA in multiple myeloma –review. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2020;28(2):713–6. https://doi.org/10.19746/j.cnki.issn.1009-2137.2020.02.061.

    Article  PubMed  Google Scholar 

  16. Hashemi M, Roshanzamir SM, Paskeh MDA, Karimian SS, Mahdavi MS, Kheirabad SK, Naeemi S, Taheriazam A, Salimimoghaddam S, Entezari M, Mirzaei S, Samarghandian S. Non-coding RNAs and exosomal ncRNAs in multiple myeloma: an emphasis on molecular pathways. Eur J Pharmacol. 2023;941:175380. https://doi.org/10.1016/j.ejphar.2022.175380.

    Article  CAS  PubMed  Google Scholar 

  17. Cun SE, Zheng JT, Wang YM. Research progress of long non-coding RNA in multiple myeloma–review. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2024;32(1):313–7. https://doi.org/10.19746/j.cnki.issn.1009-2137.2024.01.051.

    Article  PubMed  Google Scholar 

  18. Yousefi H, Purrahman D, Jamshidi M, Lak E, Keikhaei B, Mahmoudian-Sani MR. Long non-coding RNA signatures and related signaling pathway in T-cell acute lymphoblastic leukemia. Clin Transl Oncol. 2022;24(11):2081–9. https://doi.org/10.1007/s12094-022-02886-9.

    Article  CAS  PubMed  Google Scholar 

  19. Ma HN, Chen HJ, Liu JQ, Li WT. Long non-coding RNA DLEU1 promotes malignancy of breast cancer by acting as an indispensable coactivator for HIF-1α-induced transcription of CKAP2. Cell Death Dis. 2022;13(7):625. https://doi.org/10.1038/s41419-022-04880-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hofmans M, Lammens T, Depreter B, Wu Y, Erlacher M, Caye A, Cavé H, Flotho C, de Haas V, Niemeyer CM, Stary J, Van Nieuwerburgh F, Deforce D, Van Loocke W, Van Vlierberghe P, Philippé J, De Moerloose B. Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia. Sci Rep. 2021;11(1):2801. https://doi.org/10.1038/s41598-021-82509-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cruz-Miranda GM, Hidalgo-Miranda A, Bárcenas-López DA, Núñez-Enríquez JC, Ramírez-Bello J, Mejía-Aranguré JM, Jiménez-Morales S. Long non-coding RNA and acute leukemia. Int J Mol Sci. 2019;20(3):735. https://doi.org/10.3390/ijms20030735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Z, Chen X, Liu N, Shi Y, Liu Y, Ouyang L, Tam S, Xiao D, Liu S, Wen F, Tao Y. A nuclear long non-coding RNA LINC00618 accelerates ferroptosis in a manner dependent upon apoptosis. Molecular Ther. 2021;29(1):263–74. https://doi.org/10.1016/j.ymthe.2020.09.024.

    Article  CAS  Google Scholar 

  23. Wang B, Xu W, Cai Y, Guo C, Zhou G, Yuan C. CASC15: a Tumor-Associated Long Non-Coding RNA. Curr Pharm Des. 2021;27(1):127–34. https://doi.org/10.2174/1381612826666200922153701.

    Article  CAS  PubMed  Google Scholar 

  24. A. Rudich, R. Garzon, A. Dorrance, Non-Coding RNAs Are Implicit in Chronic Myeloid Leukemia Therapy Resistance. Int J Mol Sci. 2022;23(20). https://doi.org/10.3390/ijms232012271.

  25. P. D. Rodriguez, H. Paculova, S. Kogut, J. Heath, H. Schjerven, S. Frietze, Non-coding RNA signatures of B-cell acute lymphoblastic leukemia. Int J Mol Sci. 2021;22(5). https://doi.org/10.3390/ijms22052683.

  26. Liu Y, Sun P, Zhao Y, Liu B. The role of long non-coding RNAs and downstream signaling pathways in leukemia progression. Hematol Oncol. 2021;39(1):27–40. https://doi.org/10.1002/hon.2776.

    Article  CAS  PubMed  Google Scholar 

  27. S. Chen, H. Liang, H. Yang, K. Zhou, L. Xu, J. Liu, B. Lai, L. Song, H. Luo, J. Peng, Z. Liu, Y. Xiao, W. Chen, H. Tang, Long non-coding RNAs: the novel diagnostic biomarkers for leukemia. Environ Toxicol Pharmacol. 2017;55:81–6. https://doi.org/10.1016/j.etap.2017.08.014.

  28. Bhat AA, Younes SN, Raza SS, Zarif L, Nisar S, Ahmed I, Mir R, Kumar S, Sharawat SK, Hashem S, Elfaki I, Kulinski M, Kuttikrishnan S, Prabhu KS, Khan AQ, Yadav SK, El-Rifai W, Zargar MA, Zayed H, Haris M, Uddin S. Role of non-coding RNA networks in leukemia progression, metastasis and drug resistance. Mol Cancer. 2020;19(1):57. https://doi.org/10.1186/s12943-020-01175-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lammens T, Durinck K, Wallaert A, Speleman F, Van Vlierberghe P. Long non-coding RNAs in leukemia: biology and clinical impact. Curr Opin Hematol. 2017;24(4):353–8. https://doi.org/10.1097/moh.0000000000000354.

    Article  CAS  PubMed  Google Scholar 

  30. M. Farzaneh, S. Najafi, M. Sheykhi-Sabzehpoush, F. Nezhad Dehbashi, O. Anbiyaee, A. Nasrolahi, S. Azizidoost, The stem cell-specific long non-coding RNAs in leukemia. Clinical Transl Oncol. 2023;25(2):345–51. https://doi.org/10.1007/s12094-022-02952-2.

  31. Y. Maimaitiyiming, L. Ye, T. Yang, W. Yu, H. Naranmandura, linear and circular long non-coding RNAs in acute lymphoblastic leukemia: from pathogenesis to classification and treatment. Int J Mol Sci. 2022;23(8). https://doi.org/10.3390/ijms23084442.

  32. A. Congrains-Castillo, F. S. Niemann, A. S. Santos Duarte, S. T. Olalla-Saad, LEF1-AS1, long non-coding RNA, inhibits proliferation in myeloid malignancy. J Cell Mol Med. 2019;23 (4):3021–5. https://doi.org/10.1111/jcmm.14152.

  33. Bai Y, Ye B, Li T, Wang R, Qi X. H22954, a long non-coding RNA, inhibits glucose uptake in leukemia cells in a GLUT10-dependent manner. Hematology. 2022;27(1):469–75. https://doi.org/10.1080/16078454.2022.2061112.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Sun X. The functions of LncRNA in the heart. Diab Res Clin Pract. 2020;168:108249. https://doi.org/10.1016/j.diabres.2020.108249.

    Article  CAS  Google Scholar 

  35. E. G. Park, S. J. Pyo, Y. Cui, S. H. Yoon, J. W. Nam, Tumor immune microenvironment lncRNAs. Briefings Bioinform. 2022;23(1). https://doi.org/10.1093/bib/bbab504.

  36. S. Z. M, C. C. R. Hartford, A. Lal, Interrogating lncRNA functions via CRISPR/Cas systems. RNA Biol. 2021;18(12):2097–106. https://doi.org/10.1080/15476286.2021.1899500.

  37. B. Kayyar, S. Kataruka, V. Suresh Akhade, M. R. S. Rao, Molecular functions of Mrhl lncRNA in mouse spermatogenesis. Reproduction. 2023;166(3) R39-r50. https://doi.org/10.1530/rep-23-0065.

  38. J. L. Charles Richard, P. J. A. Eichhorn, Platforms for Investigating LncRNA Functions. SLAS Technol. 2018;23 (6):493–506. https://doi.org/10.1177/2472630318780639.

  39. M. C. Bridges, A. C. Daulagala, A. Kourtidis, LNCcation: lncRNA localization and function. J Cell Biol. 2021;220:(2). https://doi.org/10.1083/jcb.202009045.

  40. T. Ali, P. Grote, Beyond the RNA-dependent function of LncRNA genes. Elife. 2020;9. https://doi.org/10.7554/eLife.60583.

  41. Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen L-L, Chen R, Dean C, Dinger ME, Fitzgerald KA, Gingeras TR, Guttman M, Hirose T, Huarte M, Johnson R, Kanduri C, Kapranov P, Lawrence JB, Lee JT, Mendell JT, Mercer TR, Moore KJ, Nakagawa S, Rinn JL, Spector DL, Ulitsky I, Wan Y, Wilusz JE, Wu M. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023;24(6):430–47. https://doi.org/10.1038/s41580-022-00566-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat Struct Mol Biol. 2013;20(10):1147–55.

    Article  PubMed  Google Scholar 

  43. Schuettengruber B, Chourrout D, Vervoort M, Leblanc B, Cavalli G. Genome regulation by polycomb and trithorax proteins. Cell. 2007;128(4):735–45.

    Article  CAS  PubMed  Google Scholar 

  44. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC, Feil R, Fraser P. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science. 2008;322(5908):1717–20.

    Article  CAS  PubMed  Google Scholar 

  45. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, Nagano T, Mancini-Dinardo D, Kanduri C. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32(2):232–46. https://doi.org/10.1016/j.molcel.2008.08.022.

    Article  CAS  PubMed  Google Scholar 

  46. Su L, Kong H, Wu F, Lv H, Wu W, Wang G, Yan X, Wang J, Fang Q. Long non-coding RNA zinc finger antisense 1 functions as an oncogene in acute promyelocytic leukemia cells. Oncol Lett. 2019;18(6):6331–8. https://doi.org/10.3892/ol.2019.11014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. A. Ostini, M. Mourtada-Maarabouni, Investigation into the Role of Long-Non-Coding RNA MIAT in Leukemia. Noncoding RNA. 2023;9:(4). https://doi.org/10.3390/ncrna9040047.

  48. C. Zeng, Y. Xu, L. Xu, X. Yu, J. Cheng, L. Yang, S. Chen, Y. Li, Inhibition of long non-coding RNA NEAT1 impairs myeloid differentiation in acute promyelocytic leukemia cells. BMC cancer. 2014;14:693. https://doi.org/10.1186/1471-2407-14-693.

  49. Jing Z, Gao L, Wang H, Chen J, Nie B, Hong Q. Long non-coding RNA GAS5 regulates human B lymphocytic leukaemia tumourigenesis and metastasis by sponging miR-222. Cancer Biomark. 2019;26(3):385–92. https://doi.org/10.3233/cbm-190246.

    Article  CAS  PubMed  Google Scholar 

  50. M. Houshmand, N. Yazdi, A. Kazemi, A. Atashi, A. A. Hamidieh, A. Anjam Najemdini, M. Mohammadi Pour, M. Nikougoftar Zarif, Long non-coding RNA PVT1 as a novel candidate for targeted therapy in hematologic malignancies. Int J Biochem Cell Biol. 2018;98:54–64. https://doi.org/10.1016/j.biocel.2018.03.001.

  51. Guo H, Wu L, Zhao P, Feng A. Overexpression of long non-coding RNA zinc finger antisense 1 in acute myeloid leukemia cell lines influences cell growth and apoptosis. Exp Ther Med. 2017;14(1):647–51. https://doi.org/10.3892/etm.2017.4535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dong X, Fang Z, Yu M, Zhang L, Xiao R, Li X, Pan G, Liu J. Knockdown of long noncoding RNA HOXA-AS2 suppresses chemoresistance of acute myeloid leukemia via the miR-520c-3p/S100A4 Axis. Cell Physiol Biochem. 2018;51(2):886–96. https://doi.org/10.1159/000495387.

    Article  CAS  PubMed  Google Scholar 

  53. P. Connerty, E. Moles, C. E. de Bock, N. Jayatilleke, J. L. Smith, S. Meshinchi, C. Mayoh, M. Kavallaris, R. B. Lock, Development of siRNA-Loaded Lipid Nanoparticles Targeting Long Non-Coding RNA LINC01257 as a Novel and Safe Therapeutic Approach for t(8;21) Pediatric Acute Myeloid Leukemia. Pharmaceutics. 2021;13:(10). https://doi.org/10.3390/pharmaceutics13101681.

  54. Wang FY, Gu ZY, Gao CJ. Emerging role of long non-coding RNAs in normal and malignant hematopoiesis. Chin Med J. 2020;133(4):462–73. https://doi.org/10.1097/cm9.0000000000000624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wagner LA, Christensen CJ, Dunn DM, Spangrude GJ, Georgelas A, Kelley L, Esplin MS, Weiss RB, Gleich GJ. EGO, a novel, noncoding RNA gene, regulates eosinophil granule protein transcript expression. Blood J Am Soc Hematol. 2007;109(12):5191–8.

    CAS  Google Scholar 

  56. A. K. Ebralidze, F. C. Guibal, U. Steidl, P. Zhang, S. Lee, B. Bartholdy, M. A. Jorda, V. Petkova, F. Rosenbauer, G. Huang, PU. 1 expression is modulated by the balance of functional sense and antisense RNAs regulated by a shared cis-regulatory element. Genes Dev. 2008;22(15):2085–92.

  57. Zhang X, Lian Z, Padden C, Gerstein MB, Rozowsky J, Snyder M, Gingeras TR, Kapranov P, Weissman SM, Newburger PE. A myelopoiesis-associated regulatory intergenic noncoding RNA transcript within the human HOXA cluster. Blood J Am Soc Hematol. 2009;113(11):2526–34.

    CAS  Google Scholar 

  58. Zhang X, Weissman SM, Newburger PE. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol. 2014;11(6):777–87.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Hu W, Yuan B, Flygare J, Lodish HF. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 2011;25(24):2573–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. J. R. Alvarez-Dominguez, W. Hu, B. Yuan, J. Shi, S. S. Park, A. A. Gromatzky, A. v. Oudenaarden, H. F. Lodish, Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation. Blood J Am Soc Hematol. 2014;123(4):570–81.

  61. Hu G, Tang Q, Sharma S, Yu F, Escobar TM, Muljo SA, Zhu J, Zhao K. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nat Immunol. 2013;14(11):1190–8. https://doi.org/10.1038/ni.2712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang H, Nestor CE, Zhao S, Lentini A, Bohle B, Benson M, Wang H. Profiling of human CD4+ T-cell subsets identifies the TH2-specific noncoding RNA GATA3-AS1. J Allergy Clin Immunol. 2013;132(4):1005–8. https://doi.org/10.1016/j.jaci.2013.05.033.

    Article  CAS  PubMed  Google Scholar 

  63. Ciofani M, Madar A, Galan C, Sellars M, Mace K, Pauli F, Agarwal A, Huang W, Parkhurst CN, Muratet M, Newberry KM, Meadows S, Greenfield A, Yang Y, Jain P, Kirigin FK, Birchmeier C, Wagner EF, Murphy KM, Myers RM, Bonneau R, Littman DR. A validated regulatory network for Th17 cell specification. Cell. 2012;151(2):289–303. https://doi.org/10.1016/j.cell.2012.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Linder P, Jankowsky E. From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol. 2011;12(8):505–16. https://doi.org/10.1038/nrm3154.

    Article  CAS  PubMed  Google Scholar 

  65. Schatz DG, Ji Y. Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol. 2011;11(4):251–63. https://doi.org/10.1038/nri2941.

    Article  CAS  PubMed  Google Scholar 

  66. Boothby M, Rickert RC. Metabolic regulation of the immune humoral response. Immunity. 2017;46(5):743–55. https://doi.org/10.1016/j.immuni.2017.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. K. C. Anderson, R. D. Carrasco, Pathogenesis of myeloma. Ann Rev Pathol Mech Dis. 2011;6:249–74.

  68. Soh KT, Wallace PK. Monitoring of measurable residual disease in multiple myeloma by multiparametric flow cytometry. Curr Protoc Cytom. 2019;90(1):e63.

    Article  PubMed  PubMed Central  Google Scholar 

  69. M. JENNER, G. MORGAN, Plasma cell neoplasms.

  70. K. H. Shain, W. S. Dalton. Genetic and environmental determinants in multiple myeloma: Implications for therapy. Hematologic Cancers: From Molecular Pathobiology to Targeted Therapeutics: Springer; 2012. p. 53–82.

  71. Gao Y, Zhang S, Wang Z, Liao J. Down-regulation of miR-342-3p in hepatocellular carcinoma tissues and its prognostic significance. Eur Rev Med Pharmacol Sci. 2017;21(9):2098–102.

    CAS  PubMed  Google Scholar 

  72. A.-A. Zimta, A. B. Tigu, C. Braicu, C. Stefan, C. Ionescu, I. Berindan-Neagoe, An emerging class of long non-coding RNA with oncogenic role arises from the snoRNA host genes. Front Oncol. 2020;10:389.

  73. Y. Liu, S. Liu, C. Wu, W. Huang, B. Xu, S. Lian, L. Wang, S. Yue, N. Chen, Z. Zhu, PD-1-Mediated PI3K/Akt/mTOR, caspase 9/Caspase 3 and ERK pathways are involved in regulating the apoptosis and proliferation of CD4+ and CD8+ T cells during BVDV infection in vitro. Front Immunol. 2020;11:499703.

  74. X. Yang, H. Huang, X. Wang, H. Liu, H. Liu, Z. Lin, Knockdown of lncRNA SNHG16 suppresses multiple myeloma cell proliferation by sponging miR-342–3p. Cancer Cell Int. 2020;20:1–11.

  75. M. Xue, W. Chen, X. Li, Urothelial cancer associated 1: a long noncoding RNA with a crucial role in cancer. J Cancer Res Clin Oncol. 2016;142:1407–19.

  76. Hosseini NF, Manoochehri H, Khoei SG, Sheykhhasan M. The functional role of long non-coding RNA UCA1 in human multiple cancers: a review study. Curr Mol Med. 2021;21(2):96–110.

    Article  CAS  PubMed  Google Scholar 

  77. Yang Y, Chen L. Downregulation of lncRNA UCA1 facilitates apoptosis and reduces proliferation in multiple myeloma via regulation of the miR-1271-5p/HGF axis. J Chin Med Assoc. 2019;82(9):699–709.

    Article  PubMed  Google Scholar 

  78. Casero D, Sandoval S, Seet CS, Scholes J, Zhu Y, Ha VL, Luong A, Parekh C, Crooks GM. Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages. Nat Immunol. 2015;16(12):1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kwon J-H, Kim J, Park JY, Hong SM, Park CW, Hong SJ, Park SY, Choi YJ, Do I-G, Joh J-W. Overexpression of high-mobility group box 2 is associated with tumor aggressiveness and prognosis of hepatocellular carcinoma. Clin Cancer Res. 2010;16(22):5511–21.

    Article  CAS  PubMed  Google Scholar 

  80. F. Wang, Y. Luo, L. Zhang, M. Younis, L. Yuan, The LncRNA RP11–301G19. 1/miR-582–5p/HMGB2 axis modulates the proliferation and apoptosis of multiple myeloma cancer cells via the PI3K/AKT signalling pathway. Cancer Gene Ther. 2022;29(3):292–303.

  81. Sun Y, Jin S-D, Zhu Q, Han L, Feng J, Lu X-Y, Wang W, Wang F, Guo R-H. Long non-coding RNA LUCAT1 is associated with poor prognosis in human non-small cell lung cancer and regulates cell proliferation via epigenetically repressing p21 and p57 expression. Oncotarget. 2017;8(17):28297.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Pfeilschifter J, Diel I, Scheppach B, Bretz A, Krempien R, Erdmann J, Schmid G, Reske N, Bismar H, Seck T. Concentration of transforming growth factor beta in human bone tissue: relationship to age, menopause, bone turnover, and bone volume. J Bone Miner Res. 1998;13(4):716–30.

    Article  CAS  PubMed  Google Scholar 

  83. Z. Liu, H. Gao, Q. Peng, Y. Yang, Long Noncoding RNA LUCAT1 promotes multiple myeloma cell growth by regulating the TGF-β signaling pathway. Technol Cancer Res Treat. 2020;19:1533033820945770.

  84. Vacca A, Ribatti D, Roncali L, Ranieri G, Serio G, Silvestris F, Dammacco F. Bone marrow angiogenesis and progression in multiple myeloma. Br J Haematol. 1994;87(3):503–8.

    Article  CAS  PubMed  Google Scholar 

  85. Wang Y, Xue D, Li Y, Pan X, Zhang X, Kuang B, Zhou M, Li X, Xiong W, Li G. The long noncoding RNA MALAT-1 is a novel biomarker in various cancers: a meta-analysis based on the GEO database and literature. J Cancer. 2016;7(8):991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Yang X, Tang X, Sun P, Shi Y, Liu K, Hassan SH, Stetler RA, Chen J, Yin K-J. MicroRNA-15a/16-1 antagomir ameliorates ischemic brain injury in experimental stroke. Stroke. 2017;48(7):1941–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yan H, Gao S, Xu A, Zuo L, Zhang J, Zhao Y, Cheng Q, Yin X, Sun C, Hu Y. MALAT1 regulates network of microRNA-15a/16–VEGFA to promote tumorigenesis and angiogenesis in multiple myeloma. Carcinogenesis. 2023;44(10–11):760–72.

    Article  CAS  PubMed  Google Scholar 

  88. A. D. Gracz, S. T. Magness, Sry-box (Sox) transcription factors in gastrointestinal physiology and disease. Am J Physiol-Gastro Liver Physiol. 2011;300(4):G503-15.

  89. Chen W, Xu X-K, Li J-L, Kong K-K, Li H, Chen C, He J, Wang F, Li P, Ge X-S. MALAT1 is a prognostic factor in glioblastoma multiforme and induces chemoresistance to temozolomide through suppressing miR-203 and promoting thymidylate synthase expression. Oncotarget. 2017;8(14):22783.

    Article  PubMed  PubMed Central  Google Scholar 

  90. N. Liu, S. Feng, H. Li, X. Chen, S. Bai, Y. Liu, Long non-coding RNA MALAT1 facilitates the tumorigenesis, invasion and glycolysis of multiple myeloma via miR-1271–5p/SOX13 axis. J Cancer Res Clin Oncol. 2020;146:367–79.

  91. H. Akl, T. Vervloessem, S. Kiviluoto, M. Bittremieux, J. B. Parys, H. De Smedt, G. Bultynck, A dual role for the anti-apoptotic Bcl-2 protein in cancer: mitochondria versus endoplasmic reticulum. Biochim et Biophys Acta (BBA)-Mol cell Res. 2014;1843(10):2240–52.

  92. Chu M, Fan Y, Wu L, Ma X, Sao J, Yao Y, Zhuang W, Zhang C. Knockdown of lncRNA BDNF-AS inhibited the progression of multiple myeloma by targeting the miR-125a/b-5p-BCL2 axis. Immun Age. 2022;19:1–17.

    CAS  Google Scholar 

  93. Shen Y, Feng Y, Li F, Jia Y, Peng Y, Zhao W, Hu J, He A. lncRNA ST3GAL6-AS1 promotes invasion by inhibiting hnRNPA2B1-mediated ST3GAL6 expression in multiple myeloma. Int J Oncol. 2021;58(4):1.

    Article  Google Scholar 

  94. Wu L, Xia L, Jiang H, Hu Y, Li L, Xu L, Xia R. Long non-coding RNA DANCR represses the viability, migration and invasion of multiple myeloma cells by sponging miR-135b-5p to target KLF9. Mol Med Rep. 2021;24(3):1–12.

    Article  CAS  Google Scholar 

  95. Wu L, Xia L, Chen X, Ruan M, Li L, Xia R. Long non-coding RNA LINC01003 suppresses the development of multiple myeloma by targeting miR-33a-5p/PIM1 axis. Leuk Res. 2021;106:106565.

    Article  CAS  PubMed  Google Scholar 

  96. Thomas M, Lange-Grünweller K, Weirauch U, Gutsch D, Aigner A, Grünweller A, Hartmann R. The proto-oncogene Pim-1 is a target of miR-33a. Oncogene. 2012;31(7):918–28.

    Article  CAS  PubMed  Google Scholar 

  97. Longley D, Johnston P. Molecular mechanisms of drug resistance. J Pathol Soc Great Britain Ireland. 2005;205(2):275–92.

    CAS  Google Scholar 

  98. Benetatos L, Vartholomatos G, Hatzimichael E. MEG3 imprinted gene contribution in tumorigenesis. Int J Cancer. 2011;129(4):773–9.

    Article  CAS  PubMed  Google Scholar 

  99. Ghafouri-Fard S, Taheri M. Maternally expressed gene 3 (MEG3): a tumor suppressor long non coding RNA. Biomed Pharmacother. 2019;118:109129.

    Article  CAS  PubMed  Google Scholar 

  100. Yim WW-Y, Mizushima N. Lysosome biology in autophagy. Cell Discov. 2020;6(1):6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yamamoto H, Zhang S, Mizushima N. Autophagy genes in biology and disease. Nat Rev Genet. 2023;24(6):382–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zang X, Wang J, Xia Y, Li J, Chen L, Gu Y, Shen X. LncRNA MEG3 promotes the sensitivity of bortezomib by inhibiting autophagy in multiple myeloma. Leukemia Res. 2022;123:106967.

    Article  CAS  Google Scholar 

  103. Ghafouri-Fard S, Esmaeili M, Taheri M. H19 lncRNA: roles in tumorigenesis. Biomed Pharmacother. 2020;123:109774.

    Article  CAS  PubMed  Google Scholar 

  104. Leo CP, Hsu SY, Chun S-Y, Bae H-W, Hsueh AJ. Characterization of the antiapoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1) and the stimulation of its message by gonadotropins in the rat ovary. Endocrinology. 1999;140(12):5469–77.

    Article  CAS  PubMed  Google Scholar 

  105. Pan Y, Zhang Y, Liu W, Huang Y, Shen X, Jing R, Pu J, Wang X, Ju S, Cong H. LncRNA H19 overexpression induces bortezomib resistance in multiple myeloma by targeting MCL-1 via miR-29b-3p. Cell Death Dis. 2019;10(2):106.

    Article  PubMed  PubMed Central  Google Scholar 

  106. A.-H. Wang, W.-J. Fan, L. Fu, X.-T. Wang, LncRNA PCAT-1 regulated cell proliferation, invasion, migration and apoptosis in colorectal cancer through targeting miR-149–5p. Eur Rev Med Pharmacol Sci. 2019;23(19).

  107. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Shen X, Shen P, Yang Q, Yin Q, Wang F, Cong H, Wang X, Ju S. Knockdown of long non-coding RNA PCAT-1 inhibits myeloma cell growth and drug resistance via p38 and JNK MAPK pathways. J Cancer. 2019;10(26):6502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kubiczkova-Besse L, Sedlarikova L, Kryukov F, Radova L, Nekvindova J, Nemec P, Drandi D, Caltagirone S, Omedè P, Krejci M. Circulating miR-130a in multiple myeloma and extramedullary myeloma patients. Blood. 2014;124(21):2043.

    Article  Google Scholar 

  110. Gupta N, Kumar R, Seth T, Garg B, Sati HC, Sharma A. Clinical significance of circulatory microRNA-203 in serum as novel potential diagnostic marker for multiple myeloma. J Cancer Res Clin Oncol. 2019;145:1601–11.

    Article  CAS  PubMed  Google Scholar 

  111. Kubiczkova L, Kryukov F, Slaby O, Dementyeva E, Jarkovsky J, Nekvindova J, Radova L, Greslikova H, Kuglik P, Vetesnikova E. Circulating serum microRNAs as novel diagnostic and prognostic biomarkers for multiple myeloma and monoclonal gammopathy of undetermined significance. Haematologica. 2014;99(3):511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Manier S, Liu C-J, Avet-Loiseau H, Park J, Shi J, Campigotto F, Salem KZ, Huynh D, Glavey SV, Rivotto B. Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood J Am Soc Hematol. 2017;129(17):2429–36.

    CAS  Google Scholar 

  113. Li F, Xu Y, Deng S, Li Z, Zou D, Yi S, Sui W, Hao M, Qiu L. MicroRNA-15a/16-1 cluster located at chromosome 13q14 is down-regulated but displays different expression pattern and prognostic significance in multiple myeloma. Oncotarget. 2015;6(35):38270.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Li F, Hao M, Feng X, Zang M, Qin Y, Yi S, Li Z, Xu Y, Zhou L, Sui W. Downregulated miR-33b is a novel predictor associated with disease progression and poor prognosis in multiple myeloma. Leuk Res. 2015;39(7):793–9.

    Article  PubMed  Google Scholar 

  115. Hao M, Zang M, Wendlandt E, Xu Y, An G, Gong D, Li F, Qi F, Zhang Y, Yang Y. Low serum mi R-19a expression as a novel poor prognostic indicator in multiple myeloma. Int J Cancer. 2015;136(8):1835–44.

    Article  CAS  PubMed  Google Scholar 

  116. Lionetti M, Agnelli L, Lombardi L, Tassone P, Neri A. MicroRNAs in the pathobiology of multiple myeloma. Curr Cancer Drug Targets. 2012;12(7):823–37.

    Article  CAS  PubMed  Google Scholar 

  117. Xu J, Su Y, Xu A, Fan F, Mu S, Chen L, Chu Z, Zhang B, Huang H, Zhang J. miR-221/222-mediated inhibition of autophagy promotes dexamethasone resistance in multiple myeloma. Mol Ther. 2019;27(3):559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Jiang Y, Ding J, Li J, Chen G. Effects of microRNA-125b on multiple myeloma cell growth in vitro and in vivo. Oncol Rep. 2018;40(5):2864–75.

    CAS  PubMed  Google Scholar 

  119. Wang H, Ding Q, Wang M, Guo M, Zhao Q. miR-29b inhibits the progression of multiple myeloma through downregulating FOXP1. Hematology. 2019;24(1):32–8.

    Article  CAS  PubMed  Google Scholar 

  120. Qu X, Zhao M, Wu S, Yu W, Xu J, Xu J, Li J, Chen L. Circulating microRNA 483–5p as a novel biomarker for diagnosis survival prediction in multiple myeloma. Medical Oncol. 2014;31:1–8.

    Article  Google Scholar 

  121. S. Yoshizawa, J. Ohyashiki, M. Ohyashiki, T. Umezu, K. Suzuki, A. Inagaki, S. Iida, K. Ohyashiki, Downregulated plasma miR-92a levels have clinical impact on multiple myeloma and related disorders. Blood Cancer J. 2012;2(1):e53.

  122. Q. Shen, Q. Jiang, Z. Cong, Y. Zhou, X. Huang, L. Zhu, X. Xu, J. Qian, Knockdown of lncRNA AL928768. 3 inhibits multiple myeloma cell proliferation by inducing cell cycle arrest in G0/G1 phase. Ann Transl Med. 2022;10(4).

  123. Sedlarikova L, Gromesova B, Kubaczkova V, Radova L, Filipova J, Jarkovsky J, Brozova L, Velichova R, Almasi M, Penka M. Deregulated expression of long non-coding RNA UCA 1 in multiple myeloma. Eur J Haematol. 2017;99(3):223–33.

    Article  CAS  PubMed  Google Scholar 

  124. Zhao P, Zhao X. Baseline lncRNA PCAT1 high expression and its longitude increment during induction therapy predict worse prognosis in multiple myeloma patients. J Clin Lab Anal. 2021;35(11):e23924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Meng Y-B, He X, Huang Y-F, Wu Q-N, Zhou Y-C, Hao D-J. Long noncoding RNA CRNDE promotes multiple myeloma cell growth by suppressing miR-451. Oncol Res. 2017;25(7):1207.

    Article  PubMed  PubMed Central  Google Scholar 

  126. He X, Fan X, Zhang B, Wu L, Wu X. Expression of LINC01606 in multiple myeloma and its effect on cell invasion and migration. Am J Trans Res. 2021;13(8):8777.

    CAS  Google Scholar 

  127. Deng M, Yuan H, Liu S, Hu Z, Xiao H. Exosome-transmitted LINC00461 promotes multiple myeloma cell proliferation and suppresses apoptosis by modulating microRNA/BCL-2 expression. Cytotherapy. 2019;21(1):96–106.

    Article  CAS  PubMed  Google Scholar 

  128. Dong H, Gui R, Liu J. Upregulation of lncRNA NR_046683 serves as a prognostic biomarker and potential drug target for multiple myeloma. Front Pharmacol. 2019;10:437461.

    Article  Google Scholar 

  129. Zhou F, Guo L. Lncrna ANGPTL1-3 and its target microRNA-30a exhibit potency as biomarkers for bortezomib response and prognosis in multiple myeloma patients. Hematology. 2022;27(1):596–602.

    Article  CAS  PubMed  Google Scholar 

  130. Xu H, Yin Q, Shen X, Ju S. Long non-coding RNA CCAT2 as a potential serum biomarker for diagnosis and prognosis of multiple myeloma. Annal Hematol. 2020;99:2159–71.

    Article  CAS  Google Scholar 

  131. Sedlarikova L, Bollova B, Radova L, Brozova L, Jarkovsky J, Almasi M, Penka M, Kuglík P, Sandecká V, Stork M. Circulating exosomal long noncoding RNA PRINS—First findings in monoclonal gammopathies. Hematol Oncol. 2018;36(5):786–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Xiao X, Gu Y, Wang G, Chen S. c-Myc, RMRP, and miR-34a-5p form a positive-feedback loop to regulate cell proliferation and apoptosis in multiple myeloma. Int J Biol Macromol. 2019;122:526–37.

    Article  CAS  PubMed  Google Scholar 

  133. Liu Q, Ran R, Song M, Li X, Wu Z, Dai G, Xia R. LncRNA HCP5 acts as a miR-128-3p sponge to promote the progression of multiple myeloma through activating Wnt/β-catenin/cyclin D1 signaling via PLAGL2. Cell Biol Toxicol. 2022;38(6):979–93.

    Article  CAS  PubMed  Google Scholar 

  134. Yin Q, Shen X, Cui X, Ju S. Elevated serum lncRNA TUG1 levels are a potential diagnostic biomarker of multiple myeloma. Exp Hematol. 2019;79(47–55):e2.

    Google Scholar 

  135. Wang Z, He J, Bach D-H, Huang Y-H, Li Z, Liu H, Lin P, Yang J. Induction of m 6 A methylation in adipocyte Exosomal LncRNAs mediates myeloma drug resistance. J Exp Clin Cancer Res. 2022;41:1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Fu Y, Liu X, Zhang F, Jiang S, Liu J, Luo Y. Bortezomib-inducible long non-coding RNA myocardial infarction associated transcript is an oncogene in multiple myeloma that suppresses miR-29b. Cell Death Dis. 2019;10(4):319.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere gratitude to AlMaarefa University, Riyadh, Saudi Arabia, for providing funding to conduct this research.

Funding

The authors would like to express sincere gratitude to AlMaarefa University, Riyadh, Saudi Arabia, for providing funding to conduct this research.

Author information

Authors and Affiliations

Authors

Contributions

AAJ, SISA, GMAA, AH, RJS, AK, ME, MTR, AS and AHZ wrote the main manuscript text and AH prepared figures 1-3. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Saade Abdalkareem Jasim or Mamdouh Eldesoqui.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hawary, S.I.S., Jasim, S.A., Altalbawy, F.M.A. et al. Highlighting the role of long non-coding RNA (LncRNA) in multiple myeloma (MM) pathogenesis and response to therapy. Med Oncol 41, 171 (2024). https://doi.org/10.1007/s12032-024-02392-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02392-8

Keywords

Navigation