Skip to main content
Log in

NLRX1: a key regulator in mitochondrial respiration and colorectal cancer progression

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) is a prevalent and aggressive malignancy with high mortality rates and significant risks to human well-being. Population-wide screening for tumor suppressor genes and oncogenes shows promise for reducing the incidence and fatality of CRC. Recent studies have suggested that NLRX1, an innate immunity suppressor, may play a role in regulating chronic inflammation and tumorigenesis. However, further investigation is needed to understand the specific role of NLRX1 in CRC. To evaluate the impact of NLRX1 on migration, invasion, and metastasis, two human colon cancer cell lines were studied in vitro. Additionally, a knockout mouse tumor-bearing model was used to validate the inhibitory effect of NLRX1 on tumor emergence and progression. The Seahorse XF96 technology was employed to assess mitochondrial function and glycolysis in colorectal cancer cells overexpressing NLRX1. Moreover, public databases were consulted to analyze gene and protein expression levels of NLRX1. Finally, the results were validated using a series of CRC patient samples. Our findings demonstrate that downregulation of NLRX1 enhances proliferation, colony formation, and tumor-forming capacity in HCT116 and LoVo cells. Conversely, overexpression of NLRX1 negatively impacts basal respiration and mitochondrial ATP-linked respiration in both cell lines, resulting in a notable decrease in maximal respiration during the standard mitochondrial stress test. Furthermore, analysis of data from the TCGA database reveals a significant reduction in NLRX1 expression in colon and rectal cancer tissues compared to normal tissues. This result was validated using clinical samples, where immunohistochemistry staining and western blotting demonstrated a notable reduction in NLRX1 protein levels in CRC compared to adjacent normal tissues. The decreased expression of NLRX1 may serve as a significant prognostic indicator and diagnostic biomarker for CRC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated during this study are included either in this article or in the supplementary information files.

References

  1. Mutascio S, Mota T, Franchitti L, Sharma AA, Willemse A, Bergstresser SN, Wang H, Statzu M, Tharp GK, Weiler J, Sékaly R-P, Bosinger SE, Paiardini M, Silvestri G, Jones RB, Kulpa DA, Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA A Cancer J Clinicians. 2023;73:17–48. https://doi.org/10.3322/caac.21763.

    Article  Google Scholar 

  2. Xia C, Dong X, Li H, Cao M, Sun D, He S, Yang F, Yan X, Zhang S, Li N, Chen W, Zhao Y, Caron C, Chan Y-Y, Lee CK, Xu X, Zhang J, Masubuchi T, Wu C, Bui JD, Hui E. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135:584–90. https://doi.org/10.1097/CM9.0000000000002108.

    Article  PubMed  Google Scholar 

  3. Alvarez CA, Ramirez-Cepeda F, Santana P, Torres E, Cortes J, Guzman F, Schmitt P, Mercado L. Insights into the diversity of NOD-like receptors: Identification and expression analysis of NLRC3, NLRC5 and NLRX1 in rainbow trout. Mol Immunol. 2017;87:102–13. https://doi.org/10.1016/j.molimm.2017.03.010.

    Article  CAS  PubMed  Google Scholar 

  4. Leber A, Hontecillas R, Tubau-Juni N, Zoccoli-Rodriguez V, Abedi V, Bassaganya-Riera J. NLRX1 Modulates immunometabolic mechanisms controlling the host-gut microbiota interactions during inflammatory bowel disease. Front Immunol. 2018;9:363. https://doi.org/10.3389/fimmu.2018.00363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Proell M, Riedl SJ, Fritz JH, Rojas AM, Schwarzenbacher R. The Nod-like receptor (NLR) family: a tale of similarities and differences. PLoS ONE. 2008;3: e2119. https://doi.org/10.1371/journal.pone.0002119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moore CB, Bergstralh DT, Duncan JA, Lei Y, Morrison TE, Zimmermann AG, Accavitti-Loper MA, Madden VJ, Sun L, Ye Z, Lich JD, Heise MT, Chen Z, Ting JP-Y. NLRX1 is a regulator of mitochondrial antiviral immunity. Nature. 2008;451:573–7. https://doi.org/10.1038/nature06501.

    Article  CAS  PubMed  Google Scholar 

  7. Allen IC. Non-inflammasome forming NLRs in inflammation and tumorigenesis. Front Immunol. 2014;5:169. https://doi.org/10.3389/fimmu.2014.00169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Koblansky AA, Truax AD, Liu R, Montgomery SA, Ding S, Wilson JE, Brickey WJ, Muhlbauer M, McFadden RM, Hu P, Li Z, Jobin C, Lund PK, Ting JP. The innate immune receptor NLRX1 functions as a tumor suppressor by reducing colon tumorigenesis and key tumor-promoting signals. Cell Rep. 2016;14:2562–75. https://doi.org/10.1016/j.celrep.2016.02.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lei A, Maloy KJ. Colon cancer in the land of NOD: NLRX1 as an intrinsic tumor suppressor. Trends Immunol. 2016;37:569–70. https://doi.org/10.1016/j.it.2016.07.004.

    Article  CAS  PubMed  Google Scholar 

  10. Tattoli I, Killackey SA, Foerster EG, Molinaro R, Maisonneuve C, Rahman MA, Winer S, Winer DA, Streutker CJ, Philpott DJ, Girardin SE. NLRX1 acts as an epithelial-intrinsic tumor suppressor through the modulation of TNF-mediated proliferation. Cell Rep. 2016;14:2576–86. https://doi.org/10.1016/j.celrep.2016.02.065.

    Article  CAS  PubMed  Google Scholar 

  11. Lei Y, Wen H, Yu Y, Taxman DJ, Zhang L, Widman DG, Swanson KV, Wen K-W, Damania B, Moore CB, Giguère PM, Siderovski DP, Hiscott J, Razani B, Semenkovich CF, Chen X, Ting JP-Y. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity. 2012;36:933–46. https://doi.org/10.1016/j.immuni.2012.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Costford SR, Tattoli I, Duan FT, Volchuk A, Klip A, Philpott DJ, Woo M, Girardin SE. Male mice lacking NLRX1 are partially protected from high-fat diet-induced hyperglycemia. J Endocr Soc. 2018;2:336–47. https://doi.org/10.1210/js.2017-00360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh K, Roy M, Prajapati P, Lipatova A, Sripada L, Gohel D, Singh A, Mane M, Godbole MM, Chumakov PM, Singh R. NLRX1 regulates TNF-α-induced mitochondria-lysosomal crosstalk to maintain the invasive and metastatic potential of breast cancer cells. Biochim Biophys Acta Mol Basis Dis. 2019. https://doi.org/10.1016/j.bbadis.2019.02.018.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stokman G, Kors L, Bakker PJ, Rampanelli E, Claessen N, Teske GJD, Butter L, van Andel H, van den Bergh Weerman MA, Larsen PWB, Dessing MC, Zuurbier CJ, Girardin SE, Florquin S, Leemans JC. NLRX1 dampens oxidative stress and apoptosis in tissue injury via control of mitochondrial activity. J Exp Med. 2017;214:2405–20. https://doi.org/10.1084/jem.20161031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qian DY, Ding YS, Chen GF, Ding JJ, Chen YX, Lu TF, Wang ZX, Smego RA. A placebo-controlled clinical trial of prednisone in the treatment of early hemorrhagic fever. J Infect Dis. 1990;162:1213–4. https://doi.org/10.1093/infdis/162.5.1213.

    Article  CAS  PubMed  Google Scholar 

  16. Leber A, Hontecillas R, Zoccoli-Rodriguez V, Bienert C, Chauhan J, Bassaganya-Riera J. Activation of NLRX1 by NX-13 alleviates inflammatory bowel disease through immunometabolic mechanisms in CD4+ T Cells. J Immunol. 2019;203:3407–15. https://doi.org/10.4049/jimmunol.1900364.

    Article  CAS  PubMed  Google Scholar 

  17. Killackey SA, Bi Y, Soares F, Hammi I, Winsor NJ, Abdul-Sater AA, Philpott DJ, Arnoult D, Girardin SE. Mitochondrial protein import stress regulates the LC3 lipidation step of mitophagy through NLRX1 and RRBP1. Mol Cell. 2022;82:2815-2831.e5. https://doi.org/10.1016/j.molcel.2022.06.004.

    Article  CAS  PubMed  Google Scholar 

  18. Arnoult D, Soares F, Tattoli I, Castanier C, Philpott DJ, Girardin SE. An N-terminal addressing sequence targets NLRX1 to the mitochondrial matrix. J Cell Sci. 2009;122:3161–8. https://doi.org/10.1242/jcs.051193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martinez-Torres RJ, Chamaillard M. The ubiquitin code of NODs signaling pathways in health and disease. Front Immunol. 2019;10:2648. https://doi.org/10.3389/fimmu.2019.02648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Caruso R, Warner N, Inohara N, Nunez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity. 2014;41:898–908. https://doi.org/10.1016/j.immuni.2014.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Correa RG, Milutinovic S, Reed JC. Roles of NOD1 (NLRC1) and NOD2 (NLRC2) in innate immunity and inflammatory diseases. Biosci Rep. 2012;32:597–608. https://doi.org/10.1042/BSR20120055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bakhoum SF, Cantley LC. The Multifaceted Role of Chromosomal Instability in Cancer and Its Microenvironment. Cell. 2018;174:1347–60. https://doi.org/10.1016/j.cell.2018.08.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, Shah P, Sriram RK, Watkins TBK, Taunk NK, Duran M, Pauli C, Shaw C, Chadalavada K, Rajasekhar VK, Genovese G, Venkatesan S, Birkbak NJ, McGranahan N, Lundquist M, LaPlant Q, Healey JH, Elemento O, Chung CH, Lee NY, Imielenski M, Nanjangud G, Pe’er D, Cleveland DW, Powell SN, Lammerding J, Swanton C, Cantley LC. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553:467–72. https://doi.org/10.1038/nature25432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Coutermarsh-Ott S, Eden K, Allen IC. Beyond the inflammasome: regulatory NOD-like receptor modulation of the host immune response following virus exposure. J Gen Virol. 2016;97:825–38. https://doi.org/10.1099/jgv.0.000401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Shaanxi Provincial Natural Science Basic Research Program Key Project (2024JC-ZDXM-42) and National Natural Science Foundation of China (81971563, 81602494). We thank all the volunteers and collaborating clinicians for their participation.

Author information

Authors and Affiliations

Authors

Contributions

Y.W.M wrote the main manuscript text, Z.H.X.J. prepared figures 1-5, H.Y.S.D. prepared Supplementary material, X. prepared Table, R.X. reviewed the manuscript.

Corresponding authors

Correspondence to Xingan Wu or Rongrong Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. The First Affiliated Hospital of Fourth Military Medical University IRB (KY20163287-1) reviewed and approved this research. All animal experiments were approved by the Committee of Laboratory Experimentation of Fourth Military Medical University Animal Center. (No.20210403).

Consent to participate

All participants gave written consent prior to participating.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1393 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Sun, W., Han, M. et al. NLRX1: a key regulator in mitochondrial respiration and colorectal cancer progression. Med Oncol 41, 131 (2024). https://doi.org/10.1007/s12032-024-02364-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02364-y

Keywords

Navigation