Skip to main content
Log in

IL-6 regulates epithelial ovarian cancer EMT, invasion, and metastasis by modulating Let-7c and miR-200c through the STAT3/HIF-1α pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Interleukin-6 (IL-6) and hypoxia-inducible factor-1α (HIF-1α) play important roles in epithelial-mesenchymal transformation (EMT) and tumor development. Previous studies have demonstrated that IL-6 promotes EMT, invasion, and metastasis in epithelial ovarian cancer (EOC) cells by activating the STAT3/HIF-1α pathway. MicroRNA (miRNA) is non-coding small RNAs that also play an important role in tumor development. Notably, Let-7 and miR-200 families are prominently altered in EOC. However, whether IL-6 regulates the expression of Let-7 and miR-200 families through the STAT3/HIF-1α signaling to induce EMT in EOC remains poorly understood. In this study, we conducted in vitro and in vivo investigations using two EOC cell lines, SKOV3, and OVCAR3 cells. Our findings demonstrate that IL-6 down-regulates the mRNA levels of Let-7c and miR-200c while up-regulating their target genes HMGA2 and ZEB1 through the STAT3/HIF-1α signaling in EOC cells and in vivo. Additionally, to explore the regulatory role of HIF-1α on miRNAs, both exogenous HIF blockers YC-1 and endogenous high expression or inhibition of HIF-1α can be utilized. Both approaches can confirm that the downstream molecule HIF-1α inhibits the expression and function of Let-7c and miR-200c. Further mechanistic research revealed that the overexpression of Let-7c or miR-200c can reverse the malignant evolution of EOC cells induced by IL-6, including EMT, invasion, and metastasis. Consequently, our results suggest that IL-6 regulates the expression of Let-7c and miR-200c through the STAT3/HIF-1α pathway, thereby promoting EMT, invasion, and metastasis in EOC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2020;71(2021):209–49.

    Google Scholar 

  2. Cooke SL, Brenton JD. Evolution of platinum resistance in high-grade serous ovarian cancer. Lancet Oncol. 2011;12:1169–74.

    Article  CAS  PubMed  Google Scholar 

  3. Yuan Y. Il-6-induced epithelial-mesenchymal transition promotes the generation of breast cancer stem-like cells analogous to mammosphere cultures. Int J Oncol. 2011;40:1171–9.

    PubMed  PubMed Central  Google Scholar 

  4. Gyamfi J, Lee Y, Eom M, Choi J. Interleukin-6/stat3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep. 2018;8:8859.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang T, Yang J, Sun Y, Song J. Interleukin-6 and hypoxia synergistically promote EMT-mediated invasion in epithelial ovarian cancer via the IL-6/STAT3/HIF-1α feedback loop. Anal Cell Pathol. 2023;2023:1–14.

    Article  CAS  Google Scholar 

  6. Xu S, Yu C, Ma X, et al. IL-6 promotes nuclear translocation of HIF-1α to aggravate chemoresistance of ovarian cancer cells. Eur J Pharmacol. 2021;894: 173817.

    Article  CAS  PubMed  Google Scholar 

  7. Pan G, Liu Y, Shang L, Zhou F, Yang S. EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun. 2021;41(3):199–217.

    Article  Google Scholar 

  8. Macciò A, Madeddu C. The role of interleukin-6 in the evolution of ovarian cancer: clinical and prognostic implications-a review. J Mol Med. 2013;91:1355–68.

    Article  PubMed  Google Scholar 

  9. Bose S, Saha P, Chatterjee B, Srivastava AK. Chemokines driven ovarian cancer progression, metastasis and chemoresistance: potential pharmacological targets for cancer therapy. Semin Cancer Biol. 2022;86(Pt 2):568–79.

    Article  CAS  PubMed  Google Scholar 

  10. Mir MA, Bashir M, Jan N. The role of interleukin (IL)-6/IL-6 receptor axis in cancer, cytokine and chemokine networks in cancer. Singapore: Springer; 2023. p. 137–64.

    Google Scholar 

  11. Colomiere M, Ward AC, Riley C, Trenerry MK, Cameron-Smith D, Findlay J, et al. Cross talk of signals between EGFR and IL-6 through jak2/stat3 mediate epithelial–mesenchymal transition in ovarian carcinomas. Br J Cancer. 2009;100:134–44.

    Article  CAS  PubMed  Google Scholar 

  12. Cheng Z, Sun B, Wang S, Gao Y, Zhang Y, Zhou H, et al. Nuclear factor-κb–dependent epithelial to mesenchymal transition induced by HIF-1α activation in pancreatic cancer cells under hypoxic conditions. PLoS ONE. 2011;6: e23752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cheng Z, Wang D, Liu T, Liu W, Xia W, Xu J, et al. Effects of the hif-1α and NF-κb loop on epithelial-mesenchymal transition and chemoresistance induced by hypoxia in pancreatic cancer cells. Oncol Rep. 2014;31:1891–8.

    Article  CAS  PubMed  Google Scholar 

  14. Joseph JV, Conroy S, Pavlov K, Sontakke P, Tomar T, Eggens-Meijer E, et al. Hypoxia enhances migration and invasion in glioblastoma by promoting a mesenchymal shift mediated by the HIF1α-ZEB1 axis. Cancer Lett. 2015;359:107–16.

    Article  CAS  PubMed  Google Scholar 

  15. Yang M, Wu K. Twist activation by hypoxia inducible factor-1 (hif-1): implications in metastasis and development. Cell Cycle. 2008;7:2090–6.

    Article  CAS  PubMed  Google Scholar 

  16. Zare M, Bastami M, Solali S, Alivand MR. Aberrant mirna promoter methylation and emt-involving mirnas in breast cancer metastasis: diagnosis and therapeutic implications. J Cell Physiol. 2018;233:3729–44.

    Article  CAS  PubMed  Google Scholar 

  17. Mahmood N, Mushtaq S, Jamal Q, Hanif M, Akhlaq H, Awan R. Potential utility of cell free high mobility group at-hook 2 (hmga2) as a prognostic biomarker in liquid biopsies of oral squamous cell carcinoma. Asian Pacific J Cancer Prev: APJCP. 2021;22:407.

    Article  CAS  Google Scholar 

  18. Guo L, Chen C, Shi M, Wang F, Chen X, Diao D, et al. Stat3-coordinated lin-28–let-7–hmga2 and mir-200–zeb1 circuits initiate and maintain oncostatin m-driven epithelial–mesenchymal transition. Oncogene. 2013;32:5272–82.

    Article  CAS  PubMed  Google Scholar 

  19. Mahajan A, Liu Z, Gellert L, Zou X, Yang G, Lee P, et al. Hmga2: a biomarker significantly overexpressed in high-grade ovarian serous carcinoma. Mod Pathol. 2010;23:673–81.

    Article  CAS  PubMed  Google Scholar 

  20. Shi Z, Li X, Wu D, Tang R, Chen R, Xue S, et al. Silencing of hmga2 suppresses cellular proliferation, migration, invasion, and epithelial–mesenchymal transition in bladder cancer. Tumor Biology. 2016;37:7515–23.

    Article  CAS  PubMed  Google Scholar 

  21. Xi Y, Xin X, Ye H. Effects of hmga2 on malignant degree, invasion, metastasis, proliferation and cellular morphology of ovarian cancer cells. Asian Pacific J Trop Med. 2014;7:289–92.

    Article  CAS  Google Scholar 

  22. Sulaiman SA, Ab Mutalib N, Jamal R. Mir-200c regulation of metastases in ovarian cancer: potential role in epithelial and mesenchymal transition. Front Pharmacol. 2016;7:271.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abaurrea A, Araujo AM, Caffarel MM. The role of the IL-6 cytokine family in epithelial-mesenchymal plasticity in cancer progression. Int J Mol Sci. 2021;22(15):8334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang CX, Chen N, Wu XJ, He Y, Huang CH, Liu H, Wang WM, Wang HL. Zebrafish let-7b acts downstream of hypoxia-inducible factor-1α to assist in hypoxia-mediated cell proliferation and cell cycle regulation. Life Sci. 2017;171:21–9.

    Article  CAS  PubMed  Google Scholar 

  25. Shang Y, Chen H, Ye J, Wei X, Liu S, Wang R. Hif-1α/ascl2/mir-200b regulatory feedback circuit modulated the epithelial-mesenchymal transition (EMT) in colorectal cancer cells. Exp Cell Res. 2017;360:243–56.

    Article  CAS  PubMed  Google Scholar 

  26. Yang W, Ma J, Zhou W, Cao B, Zhou X, Zhang H, Zhao Q, Liu H, Fan D. Reciprocal regulations between miRNAs and HIF-1α in human cancers. Cell Mol Life Sci. 2019;76(3):453–71.

    Article  CAS  PubMed  Google Scholar 

  27. Shan F, Li J, Huang QY. HIF-1 alpha-induced up-regulation of miR-9 contributes to phenotypic modulation in pulmonary artery smooth muscle cells during hypoxia. J Cell Physiol. 2014;229(10):1511–20.

    Article  CAS  PubMed  Google Scholar 

  28. Kang L, Cui X, Zhang Y, Yang C, Jiang Y. Identification of microRNAs associated with sexual maturity in chicken ovary by illumina small RNA deep sequencing. BMC Genomics. 2013;14:352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gao Y, Wu J. Microrna-200c and microrna-141 as potential diagnostic and prognostic biomarkers for ovarian cancer. Tumor Biology. 2015;36:4843–50.

    Article  CAS  PubMed  Google Scholar 

  30. Tsai C, Lin L, Wang C, Chiu Y, Chou Y, Chiu S, et al. Over-expression of cofilin-1 suppressed growth and invasion of cancer cells is associated with up-regulation of let-7 microRNA. Biochim Biophys Acta Mol Basis Dis. 1852;2015:851–61.

    Google Scholar 

  31. Yan Y, Zhang F, Fan Q, Li X, Zhou K. Breast cancer-specific trail expression mediated by miRNA response elements of let-7 and mir-122. Neoplasma. 2014;61:672–9.

    Article  CAS  PubMed  Google Scholar 

  32. Canale M, Foschi FG, Andreone P, Ercolani G, Marisi G, Conti F, et al. Role of circulating microRNAs to predict hepatocellular carcinoma recurrence in patients treated with radiofrequency ablation or surgery. HPB. 2022;24:244–54.

    Article  PubMed  Google Scholar 

  33. Mayr C, Hemann MT, Bartel DP. Disrupting the pairing betweenlet-7 and hmga2 enhances oncogenic transformation. Science. 2007;315:1576–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rokavec M, Wu W, Luo J. IL6-mediated suppression of mir-200c directs constitutive activation of inflammatory signaling circuit driving transformation and tumorigenesis. Mol Cell. 2012;45:777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Garg M, Potter JA, Abrahams VM. Identification of microRNAs that regulate tlr2-mediated trophoblast apoptosis and inhibition of IL-6 miRNA. PLoS ONE. 2013;8: e77249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim HL, Cassone M, Otvos L, Vogiatzi P. HIF-1α and STAT3 client proteins interacting with the cancer chaperone Hsp90: therapeutic considerations. Cancer Biol Ther. 2008;7(1):10–4.

    Article  CAS  PubMed  Google Scholar 

  37. Nilsson CL, Dillon R, Devakumar A, Shi SDH, Greig M, Rogers JC, et al. Quantitative phosphoproteomic analysis of the stat3/il-6/hif1α signaling network: an initial study in gsc11 glioblastoma stem cells. J Proteome Res. 2010;9:430–43.

    Article  CAS  PubMed  Google Scholar 

  38. Kozak J, Jonak K, Maciejewski R. The function of mir-200 family in oxidative stress response evoked in cancer chemotherapy and radiotherapy. Biomed Pharmacother. 2020;125: 110037.

    Article  CAS  PubMed  Google Scholar 

  39. Wong T, Man O, Tsang C, Tsao S, Tsang RK, Chan JY, et al. MicroRNA let-7 suppresses nasopharyngeal carcinoma cells proliferation through down regulating c-myc expression. J Cancer Res Clin Oncol. 2011;137:415–22.

    Article  CAS  PubMed  Google Scholar 

  40. Li Q, Shi J, Liu W. The role of wnt/β-catenin-lin28a/let-7 axis in embryo implantation competency and epithelial-mesenchymal transition (EMT). Cell Commun Signal. 2020;18:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Korpal M, Kang Y. The emerging role of miR-200 family of microRNAs in epithelial-mesenchymal transition and cancer metastasis. RNA Biol. 2008;5(3):115–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Andrew L Kung (Dana-Farber Cancer Institute, USA) for providing pCMVh-HA-ssHIF-1α and the control pCMVh-HA plasmids.

Funding

This research was supported by Grants from the National Natural Science Foundation of China (No.81572852, 81273520), the Great Program of Science Foundation of Tianjin (No. 18JCZDJC33200) and Center Innovation Team Project (KYCXTD0502, KYCXTD0203).

Author information

Authors and Affiliations

Authors

Contributions

QYG, JNS and YMC conceived the work that led to the acquisition of literatures and drafted the manuscript. Material preparation, data collection and analysis were performed by HNY and WSX. YS and XN provided supervision throughout the study. YW and XC designed the outline of the review, revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yue Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4274 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q.Y., Song, J.N., Chen, Y.M. et al. IL-6 regulates epithelial ovarian cancer EMT, invasion, and metastasis by modulating Let-7c and miR-200c through the STAT3/HIF-1α pathway. Med Oncol 41, 155 (2024). https://doi.org/10.1007/s12032-024-02328-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-024-02328-2

Keywords

Navigation