Skip to main content

Advertisement

Log in

Moving beyond cisplatin resistance: mechanisms, challenges, and prospects for overcoming recurrence in clinical cancer therapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cisplatin, a classical platinum-based chemotherapy agent, has been a frontline treatment for various cancers for decades. However, its effectiveness has been hindered by the development of resistance, leading to cancer relapse. Addressing this challenge is crucial for both clinical practice and research. Hence, the imperative to unravel the intricate mechanisms underpinning cisplatin resistance and to uncover novel strategies to overcome this barrier holds immense significance. Within this review, we summarized the classification of platinum agents, highlighting their roles in therapeutic landscapes. We discussed the diverse mechanisms behind cisplatin resistance, including diminished intracellular cisplatin accumulation, intracellular detoxification, DNA repair, autophagy responses, heat shock proteins, tumor microenvironment, cancer stem cells, epigenetic regulation, ferroptosis resistance, and metabolic reprogramming. Drawing from this comprehensive understanding, we offered a series of prospective solutions to surmount cisplatin resistance and consequently mitigate the specter of disease recurrence within the realm of clinical cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.

    Article  PubMed  Google Scholar 

  3. Trimmer EE, Essigmann JM. Cisplatin. Essays Biochem. 1999;34:191–211.

    Article  CAS  PubMed  Google Scholar 

  4. Ghosh S. Cisplatin: the first metal based anticancer drug. Bioorg Chem. 2019;88: 102925.

    Article  CAS  PubMed  Google Scholar 

  5. Riddell IA. Cisplatin and oxaliplatin: our current understanding of their actions. Met Ions Life Sci. 2018;18:1.

    CAS  Google Scholar 

  6. Wheate NJ, Walker S, Craig GE, Oun R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010;39:8113–27.

    Article  CAS  PubMed  Google Scholar 

  7. Dilruba S, Kalayda GV. Platinum-based drugs: past, present and future. Cancer Chemother Pharmacol. 2016;77:1103–24.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou J, Kang Y, Chen L, Wang H, Liu J, Zeng S, et al. The drug-resistance mechanisms of five platinum-based antitumor agents. Front Pharmacol. 2020;11:343.

    Article  CAS  PubMed Central  Google Scholar 

  9. Burger H, Loos WJ, Eechoute K, Verweij J, Mathijssen RH, Wiemer EA. Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist Updat. 2011;14:22–34.

    Article  CAS  PubMed  Google Scholar 

  10. Kilari D, Guancial E, Kim ES. Role of copper transporters in platinum resistance. World J Clin Oncol. 2016;7:106–13.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bai L, Gao C, Liu Q, Yu C, Zhang Z, Cai L, et al. Research progress in modern structure of platinum complexes. Eur J Med Chem. 2017;140:349–82.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu H, Luo H, Zhang W, Shen Z, Hu X, Zhu X. Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des Devel Ther. 2016;10:1885–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holzer AK, Manorek GH, Howell SB. Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin. Mol Pharmacol. 2006;70:1390–4.

    Article  CAS  PubMed  Google Scholar 

  14. Liu JJ, Lu J, McKeage MJ. Membrane transporters as determinants of the pharmacology of platinum anticancer drugs. Curr Cancer Drug Targets. 2012;12:962–86.

    Article  CAS  Google Scholar 

  15. Li YQ, Yin JY, Liu ZQ, Li XP. Copper efflux transporters ATP7A and ATP7B: novel biomarkers for platinum drug resistance and targets for therapy. IUBMB Life. 2018;70:183–91.

    Article  CAS  PubMed  Google Scholar 

  16. Kennedy L, Sandhu JK, Harper ME, Cuperlovic-Culf M. Role of glutathione in cancer: from mechanisms to therapies. Biomolecules. 2020;10:1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bansal A, Simon MC. Glutathione metabolism in cancer progression and treatment resistance. J Cell Biol. 2018;217:2291–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Makovec T. Cisplatin and beyond: molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol Oncol. 2019;53:148–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hatem E, El Banna N, Huang ME. Multifaceted roles of glutathione and glutathione-based systems in carcinogenesis and anticancer drug resistance. Antioxid Redox Signal. 2017;27:1217–34.

    Article  CAS  PubMed  Google Scholar 

  20. Nunes SC, Serpa J. Glutathione in ovarian cancer: a double-edged sword. Int J Mol Sci. 2018;19:1882.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lan D, Wang L, He R, Ma J, Bin Y, Chi X, et al. Exogenous glutathione contributes to cisplatin resistance in lung cancer A549 cells. Am J Transl Res. 2018;10:1295–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Du H, Chen B, Jiao NL, Liu YH, Sun SY, Zhang YW. Elevated glutathione peroxidase 2 expression promotes cisplatin resistance in lung adenocarcinoma. Oxid Med Cell Longev. 2020;2020:7370157.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Si M, Lang J. The roles of metallothioneins in carcinogenesis. J Hematol Oncol. 2018;11:107.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Merlos Rodrigo MA, Jimenez Jimemez AM, Haddad Y, Bodoor K, Adam P, Krizkova S, et al. Metallothionein isoforms as double agents—their roles in carcinogenesis, cancer progression and chemoresistance. Drug Resist Updat. 2020;52: 100691.

    Article  PubMed  Google Scholar 

  25. Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics (Sao Paulo). 2018;73:e478s.

    Article  PubMed  Google Scholar 

  26. Martin LP, Hamilton TC, Schilder RJ. Platinum resistance: the role of DNA repair pathways. Clin Cancer Res. 2008;14:1291–5.

    Article  CAS  PubMed  Google Scholar 

  27. Duan M, Ulibarri J, Liu KJ, Mao P. Role of nucleotide excision repair in cisplatin resistance. Int J Mol Sci. 2020;21:9248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Damia G, Broggini M. Platinum resistance in ovarian cancer: role of DNA repair. Cancers (Basel). 2019;11:119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Slade D. PARP and PARG inhibitors in cancer treatment. Genes Dev. 2020;34:360–94.

    Article  CAS  PubMed Central  Google Scholar 

  30. Chen SH, Chang JY. New insights into mechanisms of cisplatin resistance: from tumor cell to microenvironment. Int J Mol Sci. 2019;20:4136.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wong-Brown MW, van der Westhuizen A, Bowden NA. Targeting DNA repair in ovarian cancer treatment resistance. Clin Oncol (R Coll Radiol). 2020;32:518–26.

    Article  CAS  PubMed  Google Scholar 

  32. Gasiorkiewicz BM, Koczurkiewicz-Adamczyk P, Piska K, Pekala E. Autophagy modulating agents as chemosensitizers for cisplatin therapy in cancer. Invest New Drugs. 2021;39:538–63.

    Article  CAS  PubMed  Google Scholar 

  33. Haynes B, Saadat N, Myung B, Shekhar MP. Crosstalk between translesion synthesis, Fanconi anemia network, and homologous recombination repair pathways in interstrand DNA crosslink repair and development of chemoresistance. Mutat Res Rev Mutat Res. 2015;763:258–66.

    Article  CAS  PubMed  Google Scholar 

  34. Rottenberg S, Disler C, Perego P. The rediscovery of platinum-based cancer therapy. Nat Rev Cancer. 2021;21:37–50.

    Article  CAS  PubMed  Google Scholar 

  35. Kopa P, Macieja A, Pastwa E, Majsterek I, Poplawski T. DNA double-strand breaks repair inhibitors potentiates the combined effect of VP-16 and CDDP in human colorectal adenocarcinoma (LoVo) cells. Mol Biol Rep. 2021;48:709–20.

    Article  CAS  PubMed  Google Scholar 

  36. Luo Y, Rockow-Magnone SK, Kroeger PE, Frost L, Chen Z, Han EK, et al. Blocking Chk1 expression induces apoptosis and abrogates the G2 checkpoint mechanism. Neoplasia. 2001;3:411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koberle B, Schoch S. Platinum complexes in colorectal cancer and other solid tumors. Cancers (Basel). 2021;13:2073.

    Article  PubMed  Google Scholar 

  38. Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, et al. Autophagy and multidrug resistance in cancer. Chin J Cancer. 2017;36:52.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kocaturk NM, Akkoc Y, Kig C, Bayraktar O, Gozuacik D, Kutlu O. Autophagy as a molecular target for cancer treatment. Eur J Pharm Sci. 2019;134:116–37.

    Article  CAS  Google Scholar 

  40. Usman RM, Razzaq F, Akbar A, Farooqui AA, Iftikhar A, Latif A, et al. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance. Asia Pac J Clin Oncol. 2021;17:193–208.

    Article  PubMed  Google Scholar 

  41. Chang H, Zou Z. Targeting autophagy to overcome drug resistance: further developments. J Hematol Oncol. 2020;13:159.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Xu J, Gewirtz DA. Is autophagy always a barrier to cisplatin therapy? Biomolecules. 2022;12:463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou F, Yang X, Zhao H, Liu Y, Feng Y, An R, et al. Down-regulation of OGT promotes cisplatin resistance by inducing autophagy in ovarian cancer. Theranostics. 2018;8:5200–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chang CH, Lee CY, Lu CC, Tsai FJ, Hsu YM, Tsao JW, et al. Resveratrol-induced autophagy and apoptosis in cisplatin-resistant human oral cancer CAR cells: a key role of AMPK and Akt/mTOR signaling. Int J Oncol. 2017;50:873–82.

    Article  CAS  PubMed  Google Scholar 

  45. Jolly C, Morimoto RI. Role of the heat shock response and molecular chaperones in oncogenesis and cell death. J Natl Cancer Inst. 2000;92:1564–72.

    Article  CAS  PubMed  Google Scholar 

  46. Li XF, Hua T, Li Y, Tian YJ, Huo Y, Kang S. The HSP70 gene predicts prognosis and response to chemotherapy in epithelial ovarian cancer. Ann Transl Med. 2021;9:806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lombardi R, Sonego M, Pucci B, Addi L, Iannelli F, Capone F, et al. HSP90 identified by a proteomic approach as druggable target to reverse platinum resistance in ovarian cancer. Mol Oncol. 2021;15:1005–23.

    Article  CAS  PubMed Central  Google Scholar 

  48. Krawczyk Z, Gogler-Piglowska A, Sojka DR, Scieglinska D. The role of heat shock proteins in cisplatin resistance. Anticancer Agents Med Chem. 2018;18:2093–109.

    Article  CAS  PubMed  Google Scholar 

  49. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017;387:61–8.

    Article  CAS  PubMed  Google Scholar 

  50. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66:9339–44.

    Article  CAS  PubMed  Google Scholar 

  51. Wang W, Kryczek I, Dostal L, Lin H, Tan L, Zhao L, et al. Effector T cells abrogate stroma-mediated chemoresistance in ovarian cancer. Cell. 2016;165:1092–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Qiao X, Zhu L, Song R, Shang C, Guo Y. CD44 occurring alternative splicing promotes cisplatin resistance and evokes tumor immune response in oral squamous cell carcinoma cells. Transl Oncol. 2023;31: 101644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci. 2019;234: 116781.

    Article  CAS  Google Scholar 

  54. Bai X, Ni J, Beretov J, Graham P, Li Y. Cancer stem cell in breast cancer therapeutic resistance. Cancer Treat Rev. 2018;69:152–63.

    Article  CAS  PubMed  Google Scholar 

  55. Garcia-Mayea Y, Mir C, Masson F, Paciucci R, Me LL. Insights into new mechanisms and models of cancer stem cell multidrug resistance. Semin Cancer Biol. 2020;60:166–80.

    Article  CAS  PubMed  Google Scholar 

  56. Elgendy SM, Alyammahi SK, Alhamad DW, Abdin SM, Omar HA. Ferroptosis: an emerging approach for targeting cancer stem cells and drug resistance. Crit Rev Oncol Hematol. 2020;155: 103095.

    Article  PubMed  Google Scholar 

  57. Arneth B. Tumor microenvironment. Medicina (Kaunas). 2019;56:15.

    Article  PubMed  Google Scholar 

  58. Mora Y, Reyes ME, Zanella L, Mora B, Buchegger K, Ili C, et al. Resistance to platinum-based cancer drugs: a special focus on epigenetic mechanisms. Pharmacogenomics. 2021;22:777–90.

    Article  CAS  PubMed  Google Scholar 

  59. Hu Y, Zhu QN, Deng JL, Li ZX, Wang G, Zhu YS. Emerging role of long non-coding RNAs in cisplatin resistance. Onco Targ Ther. 2018;11:3185–94.

    Article  Google Scholar 

  60. Xiong XD, Ren X, Cai MY, Yang JW, Liu X, Yang JM. Long non-coding RNAs: an emerging powerhouse in the battle between life and death of tumor cells. Drug Resist Updat. 2016;26:28–42.

    Article  PubMed  Google Scholar 

  61. Abu N, Hon KW, Jeyaraman S, Jamal R. Long noncoding RNAs as biotargets in cisplatin-based drug resistance. Future Oncol. 2018;14:3085–95.

    Article  CAS  PubMed  Google Scholar 

  62. Wei L, Sun J, Zhang N, Zheng Y, Wang X, Lv L, et al. Noncoding RNAs in gastric cancer: implications for drug resistance. Mol Cancer. 2020;19:62.

    Article  PubMed Central  Google Scholar 

  63. Wen X, Liu S, Sheng J, Cui M. Recent advances in the contribution of noncoding RNAs to cisplatin resistance in cervical cancer. PeerJ. 2020;8: e9234.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Qiao XL, Zhong ZL, Dong Y, Gao F. LncRNA HMGA1P4 promotes cisplatin-resistance in gastric cancer. Eur Rev Med Pharmacol Sci. 2020;24:8830–6.

    Google Scholar 

  65. Moghbeli M. MicroRNAs as the critical regulators of Cisplatin resistance in ovarian cancer cells. J Ovarian Res. 2021;14:127.

    Article  CAS  PubMed Central  Google Scholar 

  66. Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, et al. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer. 2019;18:147.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ting NL, Lau HC, Yu J. Cancer pharmacomicrobiomics: targeting microbiota to optimise cancer therapy outcomes. Gut. 2022;71:1412–25.

    Article  PubMed  Google Scholar 

  68. Alexander JL, Wilson ID, Teare J, Marchesi JR, Nicholson JK, Kinross JM. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat Rev Gastroenterol Hepatol. 2017;14:356–65.

    Article  CAS  PubMed  Google Scholar 

  69. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science. 2013;342:967–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Da J, Wang X, Li L, Xu Y. Fusobacterium nucleatum promotes cisplatin-resistance and migration of oral squamous carcinoma cells by up-regulating Wnt5a-mediated NFATc3 expression. Tohoku J Exp Med. 2021;253:249–59.

    Article  CAS  Google Scholar 

  71. Yu T, Guo F, Yu Y, Sun T, Ma D, Han J, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170(548–63): e16.

    Google Scholar 

  72. Koyande N, Gangopadhyay M, Thatikonda S, Rengan AK. The role of gut microbiota in the development of colorectal cancer: a review. Int J Colorect Dis. 2022;37:1509–23.

    Article  Google Scholar 

  73. Wong RS. Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87.

    Article  CAS  PubMed Central  Google Scholar 

  74. Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, et al. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol. 2015;35(Suppl):S78–103.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tomicic MT, Steigerwald C, Rasenberger B, Brozovic A, Christmann M. Functional mismatch repair and inactive p53 drive sensitization of colorectal cancer cells to irinotecan via the IAP antagonist BV6. Arch Toxicol. 2019;93:2265–77.

    Article  CAS  PubMed  Google Scholar 

  76. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31:107–25.

    Article  CAS  PubMed  Google Scholar 

  77. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W, et al. Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 2019;23:4900–12.

    Article  PubMed Central  Google Scholar 

  79. Su Y, Zhao B, Zhou L, Zhang Z, Shen Y, Lv H, et al. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 2020;483:127–36.

    Article  CAS  PubMed  Google Scholar 

  80. Liu Q, Wang K. The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol Int. 2019;43:1245–56.

    Article  CAS  Google Scholar 

  81. Wu Y, Yu C, Luo M, Cen C, Qiu J, Zhang S, et al. Ferroptosis in cancer treatment: another way to Rome. Front Oncol. 2020;10: 571127.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sazonova EV, Kopeina GS, Imyanitov EN, Zhivotovsky B. Platinum drugs and taxanes: can we overcome resistance? Cell Death Discov. 2021;7:155.

    Article  CAS  PubMed Central  Google Scholar 

  83. Guo J, Xu B, Han Q, Zhou H, Xia Y, Gong C, et al. Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res Treat. 2018;50:445–60.

    Article  CAS  PubMed  Google Scholar 

  84. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Roh JL, Kim EH, Jang HJ, Park JY, Shin D. Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett. 2016;381:96–103.

    Article  CAS  PubMed  Google Scholar 

  86. Yu W, Chen Y, Putluri N, Coarfa C, Robertson MJ, Putluri V, et al. Acquisition of cisplatin resistance shifts head and neck squamous cell carcinoma metabolism toward neutralization of oxidative stress. Cancers (Basel). 2020;12:1670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol Oncol. 2019;12:34.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Xia X, Fan X, Zhao M, Zhu P. The relationship between ferroptosis and tumors: a novel landscape for therapeutic approach. Curr Gene Ther. 2019;19:117–24.

    Article  CAS  PubMed Central  Google Scholar 

  89. Zaal EA, Berkers CR. The influence of metabolism on drug response in cancer. Front Oncol. 2018;8:500.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cocetta V, Ragazzi E, Montopoli M. Links between cancer metabolism and cisplatin resistance. Int Rev Cell Mol Biol. 2020;354:107–64.

    Article  CAS  PubMed  Google Scholar 

  91. Li J, Eu JQ, Kong LR, Wang L, Lim YC, Goh BC, et al. Targeting metabolism in cancer cells and the tumour microenvironment for cancer therapy. Molecules. 2020;25:4831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wangpaichitr M, Theodoropoulos G, Nguyen DJM, Wu C, Spector SA, Feun LG, et al. Cisplatin resistance and redox-metabolic vulnerability: a second alteration. Int J Mol Sci. 2021;22:7379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang L, Zhao X, Fu J, Xu W, Yuan J. The role of tumour metabolism in cisplatin resistance. Front Mol Biosci. 2021;8: 691795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Giacomini I, Ragazzi E, Pasut G, Montopoli M. The pentose phosphate pathway and its involvement in cisplatin resistance. Int J Mol Sci. 2020;21:937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Altman BJ, Stine ZE, Dang CV. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer. 2016;16:619–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hudson CD, Savadelis A, Nagaraj AB, Joseph P, Avril S, DiFeo A, et al. Altered glutamine metabolism in platinum resistant ovarian cancer. Oncotarget. 2016;7:41637–49.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Guo J, Yu J, Peng F, Li J, Tan Z, Chen Y, et al. In vitro and in vivo analysis of metabolites involved in the TCA cycle and glutamine metabolism associated with cisplatin resistance in human lung cancer. Expert Rev Proteom. 2021;18:233–40.

    Article  CAS  Google Scholar 

  98. Kim MC, Hwang SH, Yang Y, Kim NY, Kim Y. Reduction in mitochondrial oxidative stress mediates hypoxia-induced resistance to cisplatin in human transitional cell carcinoma cells. Neoplasia. 2021;23:653–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science & Technology Development Fund of Tianjin Education Commission for Higher Education (2021KJ243 to B. Z.) and the Tianjin Health Commission Foundation (TJWJ2021QN040 to B. Z.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Hu or Wei Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, R., Zhao, B., Chen, M. et al. Moving beyond cisplatin resistance: mechanisms, challenges, and prospects for overcoming recurrence in clinical cancer therapy. Med Oncol 41, 9 (2024). https://doi.org/10.1007/s12032-023-02237-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02237-w

Keywords

Navigation