Skip to main content

Advertisement

Log in

In vitro evaluation of p-coumaric acid and naringin combination in human epidermoid carcinoma cell line (A431)

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer is considered most detrimental due to high mortality worldwide. Among them, skin cancers play a major part by affecting one in three cancer patients globally. About 2–3 million cancer cases were reported to be non-melanoma and melanoma skin cancers, respectively. Although chemotherapeutic drugs act on cancer cells but results in long-lasting morbidities which affects one’s quality of life and also works only in the initial stage of the cancer. Hence, an idea of traditional medicine to cure the disease efficiently with less side effects was pursued by the researchers. We have assessed the combination effect of p-coumaric acid and naringin in exerting anticancer activity using A431 (epidermoid carcinoma) cells. The MTT analysis of the combination on A431 cells showed the least IC50 concentration of 41 µg/ml which is effective than the standard drug imiquimod with IC50 concentration of 52 µg/ml. Further, flow cytometric analysis was carried out to identify the molecular mechanism behind the anticancer effects of the combination. The results revealed that the combination arrested the A431 cell cycle at S phase, induced apoptosis as indicated by more early and late apoptotic cells when compared with the control, and further altered reactive oxygen species (ROS) and mitochondrial membrane potential in A431 cells. Hence, the results suggest the potential anticancer effects of p-coumaric acid and naringin combination against the skin cancer (A431) cell line. The observed effects may be additive or synergistic effects in inducing ROS generation and apoptosis, and reducing the viability of A431 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data will be made available upon reasonable request from the corresponding author.

Abbreviations

SSC:

Squamous Cell Carcinoma

BCC:

Basal Cell Carcinoma

ROS:

Reactive Oxygen Species

MMP:

Mitochondrial Membrane Potential

Drp1:

Dynamin-Related Protein

ING1:

Inhibitor of Growth

ICAD:

Inhibitor of Caspase-Activated DNAse

CAD:

Caspase-Activated DNAse

References

  1. Ossio R, Roldán-Marín R, Martínez-Said H, Adams DJ, Robles-Espinoza CD. Melanoma: a global perspective. Nat Rev Cancer. 2017;17(7):393–4. https://doi.org/10.1038/nrc.2017.43.

    Article  CAS  PubMed  Google Scholar 

  2. Vyas A, Das S, Singh D, Sonker AK, Gidwani B, Jain V, Singh M. Recent nanoparticulate approaches of drug delivery for skin cancer. Trends Appl Sci Res. 2012;7(8):620–35. https://doi.org/10.3923/tasr.2012.620.635.

    Article  Google Scholar 

  3. McGuire Shelley. World cancer report Geneva 2014, Switzerland: World health organization, International agency for research on cancer WHO Press 2015. Adv Nutri. 2016;7(2):418–9. https://doi.org/10.3945/an.116.012211.

    Article  Google Scholar 

  4. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics. Cancer J Clin. 2005;55(2):74–108. https://doi.org/10.3322/canjclin.55.2.74.

    Article  Google Scholar 

  5. Howe HL, Wingo PA, Thun MJ, et al. Annual report to the nation on the status of cancer (1973 through 1998), featuring cancers with recent increasing trends. J Natl Cancer Inst. 2001;93(11):824–42. https://doi.org/10.1093/jnci/93.11.824.

    Article  CAS  PubMed  Google Scholar 

  6. Deo SVS, Hazarika S, Shukla NK, Kumar S, Kar M, Samaiya A. Surgical management of skin cancers: experience from a regional cancer centre in North India. Indian J Cancer. 2005;42(3):145. https://doi.org/10.4103/0019-509x.17059.

    Article  CAS  PubMed  Google Scholar 

  7. Panda S. Nonmelanoma skin cancer in India: current scenario. Indian J Dermatol. 2010;55(4):373. https://doi.org/10.4103/0019-5154.74551.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Birt DF, Hendrich S, Wang W. Dietary agents in cancer prevention: flavonoids and isoflavonoids. Pharmacol Ther. 2001;90(2–3):157–77. https://doi.org/10.1016/s0163-7258(01)00137-1.

    Article  CAS  PubMed  Google Scholar 

  9. Park JH, Jin C, Lee BK, Kim G, Choi YH, Jeong YK. Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells. Food Chem Toxicol. 2008;46(12):3684–90. https://doi.org/10.1016/j.fct.2008.09.056.

    Article  CAS  PubMed  Google Scholar 

  10. Rice-Evans C, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biol Med. 1996;20(7):933–56. https://doi.org/10.1016/0891-5849(95)02227-9.

    Article  CAS  Google Scholar 

  11. Croft KD. The chemistry and biological effects of flavonoids and phenolic acids a. Ann N Y Acad Sci. 1998;854(1):435–42. https://doi.org/10.1111/j.1749-6632.1998.tb09922.x.

    Article  CAS  Google Scholar 

  12. Hertog MGL, Hollman PCH, Katan MB, Kromhout D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutr Cancer. 1993;20(1):21–9. https://doi.org/10.1080/01635589309514267.

    Article  CAS  PubMed  Google Scholar 

  13. Kanno S, Tomizawa A, Hiura T, et al. Inhibitory effects of naringenin on tumor growth in human cancer cell lines and sarcoma S-180-Implanted mice. Biol Pharm Bull. 2005;28(3):527–30. https://doi.org/10.1248/bpb.28.527.

    Article  Google Scholar 

  14. An SM, Koh JH, Boo YC. p-coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother Res. 2010;24(8):1175–80. https://doi.org/10.1002/ptr.3095.

    Article  CAS  Google Scholar 

  15. Seo YK, Kim SJ, Boo YC, Baek JS, Lee SH, Koh JH. Effects of p-coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clin Exp Dermatol. 2010;36(3):260–6. https://doi.org/10.1111/j.1365-2230.2010.03983.x.

    Article  Google Scholar 

  16. Chang TS. Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials (Basel). 2012;5(9):1661–85. https://doi.org/10.3390/ma5091661.

    Article  CAS  Google Scholar 

  17. Boo YC. p-Coumaric acid as an active ingredient in cosmetics: a review focusing on its antimelanogenic effects. Antioxidants (Basel). 2019;8(8):275. https://doi.org/10.3390/antiox8080275.

    Article  CAS  PubMed  Google Scholar 

  18. Pop T, Diaconeasa Z. Recent advances in phenolic metabolites and skin cancer. Int J Mol Sci. 2021;22(18):9707. https://doi.org/10.3390/ijms22189707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dasari S, Yedjou CG, Brodell RT, Cruse A, Tchounwou PB. Therapeutic strategies and potential implications of silver nanoparticles in the management of skin cancer. Nanotechnol Rev. 2020;9(1):1500–21. https://doi.org/10.1515/ntrev-2020-0117.

    Article  CAS  PubMed Central  Google Scholar 

  20. Davis D, Hughes C. Dead cell discrimination In Living colour. Berlin: Springer; 2000.

    Google Scholar 

  21. Yang C, Pei W, Zhao J, Cheng Y, Zheng X, Rong J. Bornyl caffeate induces apoptosis in human breast cancer MCF-7 cells via the ROS- and JNK-mediated pathways. Acta Pharmacol Sin. 2013;35(1):113–23. https://doi.org/10.1038/aps.2013.162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ahamad S, Siddiqui S, Jafri A, Ahmad S, Afzal M, Ali A. Induction of apoptosis and antiproliferative activity of naringenin in human epidermoid carcinoma cell through ROS generation and cell cycle arrest. PLoS ONE. 2014;9(10): e110003. https://doi.org/10.1371/journal.pone.0110003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu Q, Siu SO, Chen Y, et al. Senkyunolides reduce hydrogen peroxide-induced oxidative damage in human liver HepG2 cells via induction of heme oxygenase-1. Chem Biol Inter. 2010;183(3):380–9. https://doi.org/10.1016/j.cbi.2009.11.029.

    Article  CAS  Google Scholar 

  24. Hu Q, Chen B, Le XC, Rong J. Concomitant induction of heme oxygenase-1 attenuates the cytotoxicity of arsenic species from lumbricus extract in human liver HepG2 cells. Chem Biodivers. 2012;9(4):739–54. https://doi.org/10.1002/cbdv.201100133.

    Article  CAS  Google Scholar 

  25. Hegde M, Karki SS, Thomas E, et al. Novel levamisole derivative induces extrinsic pathway of apoptosis in cancer cells and inhibits tumor progression in mice. PLoS ONE. 2012;7(9): e43632. https://doi.org/10.1371/journal.pone.0043632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duncan BD. Multiple range tests for correlated and heteroscedastic means. Biometrics. 1957;13:359–64.

    Article  Google Scholar 

  27. Strömberg U, Parkes BL, Holmén A, Peterson S, Holmberg E, Baigi A, Piel FB. Disease mapping of early- and late-stage cancer to monitor inequalities in early detection: a study of cutaneous malignant melanoma. Eur J Epidemiol. 2020;35(6):537–47. https://doi.org/10.1007/s10654-020-00637-0.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sharma SH, Rajamanickam V, Sangeetha N. Antiproliferative effect of p-Coumaric acid targets UPR activation by downregulating Grp78 in colon cancer. Chem Biol Interact. 2018;291:16–28. https://doi.org/10.1016/j.cbi.2018.06.001.

    Article  CAS  PubMed  Google Scholar 

  29. Sharma SH, Rajamanickam V, Sangeetha N. Supplementation of p-coumaric acid exhibits chemopreventive effect via induction of Nrf2 in a short-term preclinical model of colon cancer. Eur J Cancer Prev. 2019;28(6):472–82. https://doi.org/10.1097/cej.0000000000000496.

    Article  CAS  PubMed  Google Scholar 

  30. Bubna AK. Imiquimod - Its role in the treatment of cutaneous malignancies. Indian J Pharmacol. 2015;47(4):354. https://doi.org/10.4103/0253-7613.161249.

    Article  CAS  PubMed Central  Google Scholar 

  31. Tillman DK Jr, Carroll MT. Topical imiquimod therapy for basal and squamous cell carcinomas: a clinical experience. Cutis. 2007;79(3):241–8.

    PubMed  Google Scholar 

  32. Bharti S, Rani N, Krishnamurthy B, Arya DS. Preclinical evidence for the pharmacological actions of Naringin: a review. Planta Med. 2014;80(06):437–51. https://doi.org/10.1055/s-0034-1368351.

    Article  CAS  PubMed  Google Scholar 

  33. Pfeffer CM, Singh ATK. Apoptosis: a target for anticancer therapy. Int J Mol Sci. 2018;19(2):448. https://doi.org/10.3390/ijms19020448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Picard M, McEwen BS, Epel ES, Sandi C. An energetic view of stress: Focus on mitochondria. Front Neuroendocrinol. 2018;49:72–85. https://doi.org/10.1016/j.yfrne.2018.01.001.

    Article  CAS  PubMed Central  Google Scholar 

  35. Burke PJ. Mitochondria, bioenergetics and apoptosis in cancer. Trends in Cancer. 2017;3(12):857–70. https://doi.org/10.1016/j.trecan.2017.10.006.

    Article  CAS  PubMed Central  Google Scholar 

  36. Pancrazi L, Di Benedetto G, Colombaioni L, et al. Foxg1 localizes to mitochondria and coordinates cell differentiation and bioenergetics. Proc Natl Acad Sci USA. 2015;112(45):13910–5. https://doi.org/10.1073/pnas.1515190112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997;326(1):1–16. https://doi.org/10.1042/bj3260001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the Caspase family and Granzyme B. J Biol Chem. 1997;272(29):17907–11. https://doi.org/10.1074/jbc.272.29.17907.

    Article  CAS  PubMed  Google Scholar 

  39. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998;391(6662):43–50. https://doi.org/10.1038/34112.

    Article  CAS  Google Scholar 

  40. Nagata S. Apoptotic DNA fragmentation. Exp Cell Res. 2000;256(1):12–8. https://doi.org/10.1006/excr.2000.4834.

    Article  CAS  PubMed  Google Scholar 

  41. Arunasree KM. Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine. 2010;17(8–9):581–8. https://doi.org/10.1016/j.phymed.2009.12.008.

    Article  CAS  PubMed  Google Scholar 

  42. Mehdi SJ, Ahmad A, Irshad M, Manzoor N, Rizvi MMA. Cytotoxic effect of carvacrol on human cervical cancer cells. Biol Med. 2011;3(2):307–12. https://doi.org/10.4172/0974-8369.10000119.

    Article  CAS  Google Scholar 

  43. Yin Q, Yan F, Zu X, et al. Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology. 2011;64(1):43–51. https://doi.org/10.1007/s10616-011-9389-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Heidarian E, Keloushadi M. Antiproliferative and anti-invasion effects of carvacrol on PC3 human prostate cancer cells through reducing pSTAT3, pAKT, and pERK1/2 signaling proteins. Int J Prev Med. 2019;10(1):156. https://doi.org/10.4103/ijpvm.ijpvm_292_17.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ahmed H, Shousha W, El-mezayen H, Ismaiel N, Mahmoud N. In vivo antitumor potential of carvacrol against hepatocellular carcinoma in rat model. World J Pharm Pharmaceut Sci. 2013;2:2367–96.

    Google Scholar 

  46. Martin-Cordero C, Leon-Gonzalez AJ, Calderon-Montano JM, Burgos-Moron E, Lopez-Lazaro M. Pro-Oxidant natural products as anticancer agents. Current Drug Targets. 2012;13(8):1006–28. https://doi.org/10.2174/138945012802009044.

    Article  CAS  PubMed  Google Scholar 

  47. Fruehauf JP, Meyskens FL. Reactive oxygen species: a breath of life or death? Clin Cancer Res. 2007;13(3):789–94. https://doi.org/10.1158/1078-0432.ccr-06-2082.

    Article  CAS  PubMed  Google Scholar 

  48. Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discovery. 2009;8(7):579–91. https://doi.org/10.1038/nrd2803.

    Article  CAS  PubMed  Google Scholar 

  49. Mokhtari R, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget. 2017;8(23):38022–43. https://doi.org/10.18632/oncotarget.16723.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the President, CEO, Vice-Chancellor, Registrar KAHE for providing b infrastructure and encouragement exercise this study.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All Authors have been intellectually committed to the study design and all processes.

Corresponding author

Correspondence to Ramakrishnan Arumugam.

Ethics declarations

Competing interest

The Authors have no financial conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velusamy, P., Muthusami, S. & Arumugam, R. In vitro evaluation of p-coumaric acid and naringin combination in human epidermoid carcinoma cell line (A431). Med Oncol 41, 4 (2024). https://doi.org/10.1007/s12032-023-02230-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02230-3

Keywords

Navigation