Skip to main content
Log in

Chitosan-encapsulated naringenin promotes ROS mediated through the activation of executioner caspase-3

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

We previously reported that chitosan nanoparticle-encapsulated Naringenin (CS-NPs/NAR) could scavenge free radicals at lower doses and be cytotoxic to cancer cells. The current study continues to focus on the mechanism behind CS-NPs/NAR-induced breast cancer cell (MDA-MB-231) death. MDA-MB-231 cells were treated with higher concentrations (100, 200, and 200 µg) of Chitosan nanoparticles (CS-NPs), naringenin (NAR), and chitosan-encapsulated naringenin (CS-NPs/NAR). The cell viability, proliferation, and oxidative stress parameters, such as nitric oxide [NO], xanthine oxidase (XOD), and xanthine dehydrogenase (XDH) levels, were analyzed. ROS levels were determined through DCFDA analysis. MTT-based cell cytotoxicity and BrdU cell proliferation analysis depicted the cytotoxicity effects (37% and 29% for 24 and 48 h) and exhibited a reduction in the proliferation of MDA-MB-231 by CS-NPs/NAR. A significant increase in NO content, XOD, a decrease in XDH, and an increase in ROS levels were observed upon treatment with CS-NPs/NAR. Fluorescent images suggested the increase in the ROS level upon treatment with CS-NPs/NAR in cancer cells, and the results suggested that it could induce apoptosis. Further, to confirm this, the activity of caspase-3 was analyzed through western blotting, and the result suggested that the higher concentration of CS-NPs/NAR has increased the activation of procaspase3 when compared to free NAR. Hence, the current investigation concludes that high doses of CS-NPs/NAR induce and increase oxidative stress and so increased activation of procaspase3 may lead to cancer cell apoptosis and reduction in cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Anitha A, Sowmya S, Kumar PTS, Deepthi S, Chennazhi KP, Ehrlich H, Tsurkan M, Jayakumar R. Chitin and chitosan in selected biomedical applications. Prog Polym Sci. 2014. https://doi.org/10.1016/j.progpolymsci.2014.02.008.

    Article  Google Scholar 

  2. Trachootham D, Lu W, Ogasawara MA, Nilsa RDV, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10:1343–74. https://doi.org/10.1089/ars.2007.1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kumar SP, Birundha K, Kaveri K, Devi KTR. Antioxidant studies of chitosan nanoparticles containing naringenin and their cytotoxicity effects in lung cancer cells. Int J Biol Macromol. 2015;78:87–95. https://doi.org/10.1016/j.ijbiomac.2015.03.045.

    Article  CAS  PubMed  Google Scholar 

  4. Jayaraman J, Jesudoss VAS, Menon VP, Namasivayam N. Anti-inflammatory role of naringenin in rats with ethanol induced liver injury. Toxicol Mech Methods. 2012;22:568–76. https://doi.org/10.3109/15376516.2012.707255.

    Article  CAS  PubMed  Google Scholar 

  5. McCord JM, Fridovich I. The reduction of cytochrome c by milk xanthine oxidase. J Biol Chem. 1968;243:5753–60. https://doi.org/10.1016/S0021-9258(18)91929-0.

    Article  CAS  PubMed  Google Scholar 

  6. Gokulnath M, Partridge NC, Selvamurugan N. Runx2, a target gene for activating transcription factor-3 in human breast cancer cells. Tumor Biol. 2015. https://doi.org/10.1007/s13277-014-2796-x.

    Article  Google Scholar 

  7. Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med. 2020. https://doi.org/10.1038/s12276-020-0384-2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huang X, Shi X, Zhou J, Li S, Zhang L, Zhao H, Kuang X, Li J. The activation of antioxidant and apoptosis pathways involved in damage of human proximal tubule epithelial cells by PM2.5 exposure. Sci Eur Environ. 2020. https://doi.org/10.1186/s12302-019-0284-z.

    Article  Google Scholar 

  9. Bastianetto S, Ramassamy C, Poirier J, Quirion R. Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage. Brain Res Mol Brain Res. 1999;66:35–41. https://doi.org/10.1016/S0169-328X(99)00002-9.

    Article  CAS  PubMed  Google Scholar 

  10. Halliwell B, Gutteridge JM. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 1981;128:347–52. https://doi.org/10.1016/0014-5793(81)80114-7.

    Article  CAS  Google Scholar 

  11. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: the evolution of a concept. Redox Biol. 2015;6:524–51. https://doi.org/10.1016/j.redox.2015.08.020.

    Article  CAS  PubMed Central  Google Scholar 

  12. Ramya Devi KT, Sivalingam N. Cichorium intybus attenuates Streptozotocin-induced pancreatic β-cell damage by inhibiting NF-κB activation and oxidative stress. J Appl Biomed. 2020;18:70–9. https://doi.org/10.32725/jab.2020.010.

    Article  Google Scholar 

  13. Fathi M, Abdolahinia ED, Barar J, Omidi Y. Smart stimuli-responsive biopolymeric nanomedicines for targeted therapy of solid tumors. Nanomedicine. 2020;15:2171–200. https://doi.org/10.2217/nnm-2020-0146.

    Article  CAS  PubMed  Google Scholar 

  14. Bashir SM, Ahmed Rather G, Patrício A, Haq Z, Sheikh AA, Ul Shah MZH, Singh H, Khan AA, Imtiyaz S, Ahmad SB, et al. Chitosan nanoparticles: a versatile platform for biomedical applications. Materials. 2022;15:6521. https://doi.org/10.3390/ma15196521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luque-Bolivar A, Pérez-Mora E, Villegas VE, Rondón-Lagos M. Resistance and overcoming resistance in breast cancer. Breast Cancer Targets Ther. 2020;12:211–29. https://doi.org/10.2147/BCTT.S270799.

    Article  CAS  Google Scholar 

  16. Frigaard J, Jensen JL, Galtung HK, Hiorth M. The potential of chitosan in nanomedicine: an overview of the cytotoxicity of chitosan based nanoparticles. Front Pharmacol. 2022;13:1492. https://doi.org/10.3389/fphar.2022.880377.

    Article  CAS  Google Scholar 

  17. Chipuk JE, Bouchier-Hayes L, Green DR. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ. 2006. https://doi.org/10.1038/sj.cdd.4401963.

    Article  Google Scholar 

  18. Friedlander RM. Apoptosis and caspases in neurodegenerative diseases. N Engl J Med. 2003;348:1365–75. https://doi.org/10.1056/NEJMra022366.

    Article  CAS  Google Scholar 

  19. Rahmanian N, Hosseinimehr SJ, Khalaj A. The paradox role of caspase cascade in ionizing radiation therapy. J Biomed Sci. 2016;23:88. https://doi.org/10.1186/s12929-016-0306-8.

    Article  CAS  PubMed Central  Google Scholar 

  20. McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013;5:1–28. https://doi.org/10.1101/cshperspect.a008656.

    Article  CAS  Google Scholar 

  21. Arslan H, Özdemir S, Altun S. Cypermethrin toxication leads to histopathological lesions and induces inflammation and apoptosis in common carp (Cyprinus carpio L). Chemosphere. 2017;180:491–9. https://doi.org/10.1016/j.chemosphere.2017.04.057.

    Article  CAS  PubMed  Google Scholar 

  22. Porter A, Janicke R. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104. https://doi.org/10.1038/sj.cdd.4400476.

    Article  CAS  PubMed  Google Scholar 

  23. Ponder KG, Boise LH. The prodomain of caspase-3 regulates its own removal and caspase activation. Cell Death Discov. 2019;5:56. https://doi.org/10.1038/s41420-019-0142-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Madesh M, Balasubramanian KA. A microtiter plate assay for superoxide using MTT reduction method. Indian J Biochem Biophys. 1997;34:535–9 (PMID: 9803669).

    CAS  PubMed  Google Scholar 

  25. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84:9265–9. https://doi.org/10.1073/pnas.84.24.9265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parks DA, Granger DN. Ischemia-reperfusion injury: a radical view. Hepatology. 1988;8:680–2. https://doi.org/10.1002/hep.1840080341.

    Article  CAS  PubMed  Google Scholar 

  27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. https://doi.org/10.1016/0003-2697(76)90527-3.

    Article  CAS  PubMed  Google Scholar 

  28. Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol. 2010;594:57–72. https://doi.org/10.1007/978-1-60761-411-1_4.

    Article  CAS  PubMed  Google Scholar 

  29. Datta S, Choudhury D, Das A, Das Mukherjee D, Das N, Roy SS, Chakrabarti G. Paclitaxel resistance development is associated with biphasic changes in reactive oxygen species, mitochondrial membrane potential and autophagy with elevated energy production capacity in lung cancer cells: a chronological study. Tumor Biol. 2017. https://doi.org/10.1177/1010428317694314.

    Article  Google Scholar 

  30. Agarwal A, Kasinathan A, Ganesan R, Balasubramanian A, Bhaskaran J, Suresh S, Srinivasan R, Aravind KB, Sivalingam N. Curcumin induces apoptosis and cell cycle arrest via the activation of reactive oxygen species-independent mitochondrial apoptotic pathway in Smad4 and p53 mutated colon adenocarcinoma HT29 cells. Nutr Res. 2018;51:67–81. https://doi.org/10.1016/j.nutres.2017.12.011.

    Article  CAS  PubMed  Google Scholar 

  31. Crowley LC, Scott AP, Marfell BJ, Boughaba JA, Chojnowski G, Waterhouse NJ. Measuring cell death by propidium iodide uptake and flow cytometry. Cold Spring Harb Protoc. 2016. https://doi.org/10.1101/pdb.prot087163.

    Article  PubMed  Google Scholar 

  32. Ahmadian S, Barar J, Saei AA, Fakhree MAA, Omidi Y. Cellular toxicity of nanogenomedicine in MCF-7 cell line: MTT assay. J Vis Exp JoVE. 2009. https://doi.org/10.3791/1191.

    Article  PubMed  Google Scholar 

  33. Ahamed M, Ali D, Alhadlaq HA, Akhtar MJ. Nickel oxide nanoparticles exert cytotoxicity via oxidative stress and induce apoptotic response in human liver cells (HepG2). Chemosphere. 2013;93:2514–22. https://doi.org/10.1016/j.chemosphere.2013.09.047.

    Article  CAS  Google Scholar 

  34. Sridevi DV, Ramya Devi KT, Jayakumar N, Sundaravadivel E. PH dependent synthesis of TiO2nanoparticles exerts its effect on bacterial growth inhibition and osteoblasts proliferation. AIPAdv. 2020. https://doi.org/10.1063/50020029.

    Article  Google Scholar 

  35. Friederich M, Hansell P, Palm F. Diabetes, oxidative stress, nitric oxide and mitochondria function. Curr Diabetes Rev. 2009;5:120–44. https://doi.org/10.2174/157339909788166800.

    Article  CAS  PubMed  Google Scholar 

  36. Ramya Devi KT. Cichorium intybus L. accords hepatoprotection in Streptozotocin induced diabetes mellitus in Wistar rats. Res J Biotechnol. 2018;13:42–5.

    Google Scholar 

  37. Tawa P, Hell K, Giroux A, Grimm E, Han Y, Nicholson DW, Xanthoudakis S. Catalytic activity of caspase-3 is required for its degradation: stabilization of the active complex by synthetic inhibitors. Cell Death Differ. 2004;11:439–47. https://doi.org/10.1038/sj.cdd.4401360.

    Article  CAS  PubMed  Google Scholar 

  38. Bekele R, Venkatraman G, Liu RZ, et al. Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance. Sci Rep. 2016;6:21164. https://doi.org/10.1038/srep21164.

    Article  CAS  PubMed Central  Google Scholar 

  39. Murakami A, Ashida H, Terao J. Multitargeted cancer prevention by quercetin. Cancer lett. 2008;269(2):315–25. https://doi.org/10.1016/j.canlet.2008.03.046.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

KTR and MKJ: designed this work. MRG has done the work based on FACS and confocal images, and the technical help had been taken from KD for fluorescent imaging. The manuscript was written by KTR and reviewed by KTR and MKJ.

Corresponding author

Correspondence to K. T. Ramya Devi.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya Devi, K.T., Jaganathan, M.K., Ganesh, M.R. et al. Chitosan-encapsulated naringenin promotes ROS mediated through the activation of executioner caspase-3. Med Oncol 41, 3 (2024). https://doi.org/10.1007/s12032-023-02227-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02227-y

Keywords

Navigation