Skip to main content

Advertisement

Log in

Musashi-2 (MSI2) promotes neuroblastoma tumorigenesis through targeting MYC-mediated glucose-6-phosphate dehydrogenase (G6PD) transcriptional activation

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Neuroblastoma (NB) is the deadliest pediatric solid tumor due to its rapid proliferation. Aberrant expression of MYCN is deemed as the most remarkable feature for the predictive hallmark of NB progression and recurrence. However, the phenomenon that only detection of MYCN in the nearly 20% of NB patients hints that there should be other vital oncogenes in the progression of NB. Here, we firstly show that MSI2 mRNA is augmented by analyzing public GEO datasets in the malignant stage according to International Neuroblastoma Staging System (INSS) stages. Although accumulating evidences uncover the emerging roles of MSI2 in several cancers, the regulatory functions and underlying mechanisms of MSI2 in NB remain under-investigated. Herein, we identified that high-expressed MSI2 and low-expressed n-Myc group account for 43.1% of total NB clinical samples (n = 65). Meanwhile, MSI2 expression is profoundly upregulated along with NB malignancy and negatively associated with the survival outcome of NB patients in the NB tissue microarray (NB: n = 65; Ganglioneuroblastoma: n = 31; Ganglioneuroma: n = 27). In vitro, our results revealed that MSI2 promoted migration, invasion, and proliferation of NB cells via enhancing pentose phosphate pathway. Mechanistically, MSI2 upregulated the key enzyme glucose-6-phosphate dehydrogenase (G6PD) via directly binding to 3'-untranslated regions of c-Myc mRNA to facilitate its stability, resulting in enhancing pentose phosphate pathway. Our findings reveal that MSI2 promotes pentose phosphate pathway via activating c-Myc-G6PD signaling, suggesting that MSI2 exhibits a novel and powerful target for the diagnosis and treatment of NB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data and materials availability

All data supporting the conclusions of this study are included in this published article. All data are included in the manuscript.

Abbreviations

MSI2:

Musashi-2

G6PD:

Glucose-6-phosphate dehydrogenase

NB:

Neuroblastoma

TMA:

Tissue microarray

IHC:

Immunohistochemistry

INRG:

The International Neuroblastoma Risk Group

RIP:

RNA-binding protein immunoprecipitation

References

  1. Pinto NR, Applebaum MA, Volchenboum SL, Matthay KK, London WB, Ambros PF, et al. Advances in risk classification and treatment strategies for neuroblastoma. J Clin Oncol. 2015;33(27):3008–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shimada H, Umehara S, Monobe Y, Hachitanda Y, Nakagawa A, Goto S, et al. International neuroblastoma pathology classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children’s Cancer Group. Cancer. 2001;92(9):2451–61.

    Article  CAS  PubMed  Google Scholar 

  3. DuBois SG, Kalika Y, Lukens JN, Brodeur GM, Seeger RC, Atkinson JB, et al. Metastatic sites in stage IV and IVS neuroblastoma correlate with age, tumor biology, and survival. J Pediatr Hematol Oncol. 1999;21(3):181–9.

    Article  CAS  PubMed  Google Scholar 

  4. Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010;362(23):2202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mora J, Cheung NKV, Gerald WL. Genetic heterogeneity and clonal evolution in neuroblastoma. Br J Cancer. 2001;85(2):182–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nakamura M, Okano H, Blendy JA, Montell C. Musashi, a neural RNA-binding protein required for Drosophila adult external sensory organ development. Neuron. 1994;13(1):67–81.

    Article  CAS  PubMed  Google Scholar 

  7. Kudinov AE, Karanicolas J, Golemis EA, Boumber Y. Musashi RNA-binding proteins as cancer drivers and novel therapeutic targets. Clin Cancer Res. 2017;23(9):2143–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Park SM, Deering RP, Lu Y, Tivnan P, Lianoglou S, Al-Shahrour F, et al. Musashi-2 controls cell fate, lineage bias, and TGF-beta signaling in HSCs. J Exp Med. 2014;211(1):71–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sakakibara S, Nakamura Y, Yoshida T, Shibata S, Koike M, Takano H, et al. RNA-binding protein Musashi family: roles for CNS stem cells and a subpopulation of ependymal cells revealed by targeted disruption and antisense ablation. Proc Natl Acad Sci USA. 2002;99(23):15194–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang S, Li N, Yousefi M, Nakauka-Ddamba A, Li F, Parada K, et al. Transformation of the intestinal epithelium by the MSI2 RNA-binding protein. Nat Commun. 2015;6:6517.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu Y, Zhou B, Hu X, Ying S, Zhou Q, Xu W, et al. LncRNA LINC00942 promotes chemoresistance in gastric cancer by suppressing MSI2 degradation to enhance c-Myc mRNA stability. Clin Transl Med. 2022;12(1):e703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Qu C, He L, Yao N, Li JY, Jiang YCA, Li BK, et al. Myofibroblast-specific Msi2 knockout inhibits HCC progression in a mouse model. Hepatology. 2021;74(1):458–73.

    Article  CAS  PubMed  Google Scholar 

  13. Dong WW, Liu XB, Yang CQ, Wang D, Xue YX, Ruan XL, et al. Glioma glycolipid metabolism: MSI2-SNORD12B-FIP1L1-ZBTB4 feedback loop as a potential treatment target. Clin Transl Med. 2021;11(5):e411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hattori A, McSkimming D, Kannan N, Ito T. RNA binding protein MSI2 positively regulates FLT3 expression in myeloid leukemia. Leukemia Res. 2017;54:47–54.

    Article  CAS  Google Scholar 

  15. Hattori A, Tsunoda M, Konuma T, Kobayashi M, Nagy T, Glushka J, et al. Cancer progression by reprogrammed BCAA metabolism in myeloid leukaemia. Nature. 2017;545(7655):500–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Makhov P, Bychkov I, Faezov B, Deneka A, Kudinov A, Nicolas E, et al. Musashi-2 (MSI2) regulates epidermal growth factor receptor (EGFR) expression and response to EGFR inhibitors in EGFR-mutated non-small cell lung cancer (NSCLC). Oncogenesis. 2021;10(3):29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heiden MGV, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

    Article  Google Scholar 

  18. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891–9.

    Article  CAS  PubMed  Google Scholar 

  19. Wamelink M, Struys E, Jakobs C. The biochemistry, metabolism and inherited defects of the pentose phosphate pathway: a review. J Inherit Metab Dis. 2008;31(6):703–17.

    Article  CAS  PubMed  Google Scholar 

  20. Jiang P, Du WJ, Wu MA. Regulation of the pentose phosphate pathway in cancer. Protein Cell. 2014;5(8):592–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bose S, Huang Q, Ma Y, Wang L, Rivera GO, Ouyang Y, et al. G6PD inhibition sensitizes ovarian cancer cells to oxidative stress in the metastatic omental microenvironment. Cell Rep. 2022;39(13):111012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aurora AB, Khivansara V, Leach A, Gill JG, Martin-Sandoval M, Yang CD, et al. Loss of glucose 6-phosphate dehydrogenase function increases oxidative stress and glutaminolysis in metastasizing melanoma cells. Proc Natl Acad Sci USA. 2022;119(6):e2120617119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang P, Huang M, Qi WW, Wang FH, Yang TY, Gao TX, et al. FUBP1 promotes neuroblastoma proliferation via enhancing glycolysis-a new possible marker of malignancy for neuroblastoma. J Exp Clin Canc Res. 2019;38(1):400.

    Article  Google Scholar 

  24. Qiu B, Matthay KK. Advancing therapy for neuroblastoma. Nat Rev Clin Oncol. 2022;19(8):515–33.

    Article  CAS  PubMed  Google Scholar 

  25. Chen YY, Takita J, Choi YL, Kato M, Ohira M, Sanada M, et al. Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 2008;455(7215):971–4.

    Article  CAS  PubMed  Google Scholar 

  26. Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, et al. The genetic landscape of high-risk neuroblastoma. Nat Genet. 2013;45(3):279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ponzoni M, Bachetti T, Corrias MV, Brignole C, Pastorino F, Calarco E, et al. Recent advances in the developmental origin of neuroblastoma: an overview. J Exp Clin Cancer Res. 2022;41(1):92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang PL, Teng L, Feng YC, Yue YM, Han MM, Yan Q, et al. The N-Myc-responsive lncRNA MILIP promotes DNA double-strand break repair through non-homologous end joining. Proc Natl Acad Sci USA. 2022;119(49):e2208904119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grunblatt E, Wu N, Zhang H, Liu X, Norton JP, Ohol Y, et al. MYCN drives chemoresistance in small cell lung cancer while USP7 inhibition can restore chemosensitivity. Genes Dev. 2020;34(17–18):1210–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kharas MG, Lengner CJ. Stem cells, cancer, and MUSASHI in blood and guts. Trends Cancer. 2017;3(5):347–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stine ZE, Schug ZT, Salvino JM, Dang CV. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov. 2022;21(2):141–62.

    Article  CAS  PubMed  Google Scholar 

  32. Wu S, Wang H, Li Y, Xie Y, Huang C, Zhao H, et al. Transcription factor YY1 promotes cell proliferation by directly activating the pentose phosphate pathway. Cancer Res. 2018;78(16):4549–62.

    Article  CAS  PubMed  Google Scholar 

  33. Ding H, Chen Z, Wu K, Huang SM, Wu WL, LeBoeuf SE, et al. Activation of the NRF2 antioxidant program sensitizes tumors to G6PD inhibition. Sci Adv. 2021;7(47):eabk1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang R, Tao F, Ruan S, Hu M, Hu Y, Fang Z, et al. The TGFbeta1-FOXM1-HMGA1-TGFbeta1 positive feedback loop increases the cisplatin resistance of non-small cell lung cancer by inducing G6PD expression. Am J Transl Res. 2019;11(11):6860–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yin X, Tang B, Li JH, Wang Y, Zhang L, Xie XY, et al. ID1 promotes hepatocellular carcinoma proliferation and confers chemoresistance to oxaliplatin by activating pentose phosphate pathway. J Exp Clin Cancer Res. 2017;36(1):166.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fang Y, Shen ZY, Zhan YZ, Feng XC, Chen KL, Li YS, et al. CD36 inhibits beta-catenin/c-myc-mediated glycolysis through ubiquitination of GPC4 to repress colorectal tumorigenesis. Nat Commun. 2019;10(1):3981.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tang YC, Hsiao JR, Jiang SS, Chang JY, Chu PY, Liu KJ, et al. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation. Theranostics. 2021;11(11):5232–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao L, Zhang P, Li J, Wu M. LAST, a c-Myc-inducible long noncoding RNA, cooperates with CNBP to promote CCND1 mRNA stability in human cells. eLife. 2017;6:e30433.

    Article  PubMed  PubMed Central  Google Scholar 

  39. He L, Liu J, Collins I, Sanford S, O’Connell B, Benham CJ, et al. Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO J. 2000;19(5):1034–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Arnovitz S, Mathur P, Tracy M, Mohsin A, Mondal S, Quandt J, et al. Tcf-1 promotes genomic instability and T cell transformation in response to aberrant beta-catenin activation. Proc Natl Acad Sci U S A. 2022;119(32):e2201493119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Umek T, Sollander K, Bergquist H, Wengel J, Lundin KE, Smith CIE, et al. Oligonucleotide binding to non-B-DNA in MYC. Molecules. 2019;24(5):1000.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Duggimpudi S, Kloetgen A, Maney SK, Munch PC, Hezaveh K, Shaykhalishahi H, et al. Transcriptome-wide analysis uncovers the targets of the RNA-binding protein MSI2 and effects of MSI2’s RNA-binding activity on IL-6 signaling. J Biol Chem. 2018;293(40):15359–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank for giving NB cell lines for a gift by Sun Yat-sen University School of Medicine.

Funding

This project was funded by the National Nature Science Foundation of China (NO: 82202829); the Guangdong Basic and Applied Basic research Foundation (NO: 2021A1515110094); the Sci-tech Research Project of Guangzhou Municipality (NO: 202201010180; NO: 202102021165; NO: 202102020776); and the Science Foundation of Guangzhou People’s First Hospital (KY09040041).

Author information

Authors and Affiliations

Authors

Contributions

BX designed the whole experiments and funded this study; PJ performed the experiments and data analysis; TZ collected clinical samples and analyzed the data; BW, XL, and MF carried out the experiments in vitro. All authors reviewed and agreed to submit the final manuscript.

Corresponding author

Correspondence to Banglao Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval and consent to the participate

The authors declare that the manuscript was approved by the Medical Ethics Committee of Southern China University of Technology.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Zhang, T., Wu, B. et al. Musashi-2 (MSI2) promotes neuroblastoma tumorigenesis through targeting MYC-mediated glucose-6-phosphate dehydrogenase (G6PD) transcriptional activation. Med Oncol 40, 332 (2023). https://doi.org/10.1007/s12032-023-02199-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02199-z

Keywords

Navigation