Skip to main content

Advertisement

Log in

Toxicity evaluation of synthetic glucocorticoids against breast cancer cell lines MDA-MB-231, MCF-7 and human embryonic kidney HEK293

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

In this study, we conducted a comprehensive assessment of the cytotoxicity of three glucocorticoids, namely Hydrocortisone, Dexamethasone, and Methylprednisolone, using three different human cell lines: MDA-MB-231, MCF-7 (both adenocarcinoma cell lines), and HEK293 (kidney epithelial cell line). At lower concentrations exceeding 50 µM, we did not observe any significant toxic effects of these glucocorticoids. However, when exposed to higher concentrations, Hydrocortisone exhibited dose-dependent cytotoxic effects on all three cell lines, with calculated IC50 values of 12 ± 0.6 mM for HEK293, 2.11 ± 0.05 mM for MDA-MB-231, and 2.73 ± 0.128 mM for MCF-7 cells after 48 h of exposure. Notably, Hydrocortisone, at its respective IC50 concentrations, demonstrated an inhibitory effect on the proliferation of the cancer cell lines, as evidenced by a substantial reduction in BrdU absorbance in a dose-dependent manner, coupled with a markedly reduced rate of colony formation in treated cells. Furthermore, Hydrocortisone exhibited remarkable anti-migratory properties in MDA-MB-231 and MCF-7 cells, and it induced cell cycle arrest in the SubG1 phase in MDA-MB-231 cells. In addition to these effects, Hydrocortisone triggered apoptosis in both cancer cell types, leading to observable morphological changes. This apoptotic response was characterized by a significant increase in the activity of caspase-3, which was time-dependent. Additionally, Hydrocortisone downregulated the expression of anti-apoptotic Bcl-2 proteins. In summary, our findings underscore the safety of clinical doses in terms of cell toxicity meanwhile increased concentration were showing an anti-proliferative potential of Hydrocortisone, particularly against adenocarcinoma breast cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data is available in the article.

References

  1. Kumar R. Emerging role of glucocorticoid receptor in castration resistant prostate cancer: a potential therapeutic target. J Cancer. 2020;11(3):696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Xing K, Gu B, Zhang P, Wu X. Dexamethasone enhances programmed cell death 1 (PD-1) expression during T cell activation: an insight into the optimum application of glucocorticoids in anti-cancer therapy. BMC Immunol. 2015;16(1):1–9.

    Article  CAS  Google Scholar 

  3. Inaba H, Pui C-H. Glucocorticoid use in acute lymphoblastic leukaemia. Lancet Oncol. 2010;11(11):1096–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Parisi D, Adasme MF, Sveshnikova A, Bolz SN, Moreau Y, Schroeder M. Drug repositioning or target repositioning: A structural perspective of drug–target–indication relationship for available repurposed drugs. Comput Struct Biotechnol J. 2020;18:1043–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van der Goes MC, Jacobs JW, Bijlsma JW. The value of glucocorticoid co-therapy in different rheumatic diseases—positive and adverse effects. Arthritis Res Ther. 2014;16(Suppl 2):S2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Barnes PJ. Molecular mechanisms of corticosteroids in allergic diseases. Allergy. 2001;56(10):928–36.

    Article  CAS  PubMed  Google Scholar 

  7. Dashti-Khavidaki S, Saidi R, Lu H. Current status of glucocorticoid usage in solid organ transplantation. World J Transplant. 2021;11(11):443–65.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Flynn JK, Dankers W, Morand EF. Could GILZ be the answer to glucocorticoid toxicity in lupus? Front Immunol. 2019;10:1684–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shetty K, Sherje AP. Nano intervention in topical delivery of corticosteroid for psoriasis and atopic dermatitis—a systematic review. J Mater Sci Mater Med. 2021;32(8):88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reinhart WH. Steroidtherapie. Praxis. 2005;94(7):239–43.

    Article  CAS  PubMed  Google Scholar 

  12. Manser R, Reid D, Abramson MJ. Corticosteroids for acute severe asthma in hospitalised patients. Cochrane Database Syst Rev. 2001. https://doi.org/10.1002/14651858.CD001740.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Suehs CM, Menzies-Gow A, Price D, Bleecker ER, Canonica GW, Gurnell M, Bourdin A. Expert consensus on the tapering of oral corticosteroids for the treatment of asthma. A delphi study. Am J Respir Crit Care Med. 2021;203(7):871–81.

    Article  CAS  PubMed  Google Scholar 

  14. Sneeboer MMS, Hutten BA, Majoor CJ, Bel EHD, Kamphuisen PW. Oral and inhaled corticosteroid use and risk of recurrent pulmonary embolism. Thromb Res. 2016;140:46–50.

    Article  CAS  PubMed  Google Scholar 

  15. Ravelli A, Lattanzi B, Consolaro A, Martini A. Glucocorticoids in paediatric rheumatology. Clin Exp Rheumatol Incl Suppl. 2011;29(5):S148.

    CAS  Google Scholar 

  16. Paragliola RM, Papi G, Pontecorvi A, Corsello SM. Treatment with synthetic glucocorticoids and the hypothalamus–pituitary–adrenal axis. Int J Mol Sci. 2017;18(10):2201.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Curtiss PH Jr, Clark WS, Herndon CH. VERTEBRAL FRACTURES RESULTING FROM PROLONGED CORTISONE AND CORTICOTROPIN THERAPY. J Am Med Assoc. 1954;156(5):467–9.

    Article  PubMed  Google Scholar 

  18. van Staa TP. The pathogenesis, epidemiology and management of glucocorticoid-induced osteoporosis. Calcif Tissue Int. 2006;79(3):129–37.

    Article  CAS  PubMed  Google Scholar 

  19. Matusik E, Durmala J, Ksciuk B, Matusik P. Body composition in multiple sclerosis patients and its relationship to the disability level. Dis Durat Glucocorticoid Ther Nutr. 2022;14(20):4249.

    CAS  Google Scholar 

  20. Khojah A, Liu V, Morgan G, Shore RM, Pachman LM. Changes in total body fat and body mass index among children with juvenile dermatomyositis treated with high-dose glucocorticoids. Pediatr Rheumatol. 2021;19(1):118.

    Article  Google Scholar 

  21. Clore JN, Thurby-Hay L. Glucocorticoid-induced hyperglycemia. Endocr Pract. 2009;15(5):469–74.

    Article  PubMed  Google Scholar 

  22. Wei L, MacDonald TM, Walker BR. Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Ann Intern Med. 2004;141(10):764–70.

    Article  PubMed  Google Scholar 

  23. Warrington TP, Bostwick JM. Psychiatric adverse effects of corticosteroids. Mayo Clin Proc. 2006;81(10):1361–7.

    Article  CAS  PubMed  Google Scholar 

  24. Kenna HA, Poon AW, de los Angeles CP, Koran LM. Psychiatric complications of treatment with corticosteroids: review with case report. Psychiatry Clin Neurosci. 2011;65(6):549–60.

    Article  CAS  PubMed  Google Scholar 

  25. Heffelfinger AK, Newcomer JW. Glucocorticoid effects on memory function over the human life span. Dev Psychopathol. 2001;13(3):491–513.

    Article  CAS  PubMed  Google Scholar 

  26. Glück T, Kiefmann B, Grohmann M, Falk W, Straub RH, Schölmerich J. Immune status and risk for infection in patients receiving chronic immunosuppressive therapy. J Rheumatol. 2005;32(8):1473–80.

    PubMed  Google Scholar 

  27. Jick SS, Lieberman ES, Rahman MU, Choi HK. Glucocorticoid use, other associated factors, and the risk of tuberculosis. Arthritis Rheum. 2006;55(1):19–26.

    Article  PubMed  Google Scholar 

  28. Blackburn D, Hux J, Mamdani M. Quantification of the risk of corticosteroid-induced diabetes mellitus among the elderly. J Gen Intern Med. 2002;17(9):717–20.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rice JB, White AG, Scarpati LM, Wan G, Nelson WW. Long-term systemic corticosteroid exposure: a systematic literature review. Clin Ther. 2017;39(11):2216–29.

    Article  CAS  PubMed  Google Scholar 

  30. Buxant F, Kindt N, Laurent G, Noël J-C, Saussez S. Antiproliferative effect of dexamethasone in the MCF-7 breast cancer cell line. Mol Med Rep. 2015;12(3):4051–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pang JM, Huang Y-C, Sun S-P, Pan Y-R, Shen C-Y, Kao M-C, Wang R-H, Wang L-H, Lin K-T. Effects of synthetic glucocorticoids on breast cancer progression. Steroids. 2020;164: 108738.

    Article  CAS  PubMed  Google Scholar 

  32. Obradović MMS, Hamelin B, Manevski N, Couto JP, Sethi A, Coissieux M-M, Münst S, Okamoto R, Kohler H, Schmidt A, Bentires-Alj M. Glucocorticoids promote breast cancer metastasis. Nature. 2019;567(7749):540–4.

    Article  PubMed  Google Scholar 

  33. Glucocorticoid doses—Search results. Page 1 of about 41839 results. https://www.drugs.com/search.php?searchterm=glucocorticoid+doses.

  34. Longui CA, Santos MC, Formiga CB, Oliveira DVA, Rocha MN, Faria CDC, Kochi C, Monte O. Antiproliferative and apoptotic potencies of glucocorticoids: nonconcordance with their antiinflammatory and immunossuppressive properties. Arq Bras Endocrinol Metab. 2005;49:378–83.

    Article  Google Scholar 

  35. Dobos J, Kenessey I, Tímár J, Ladányi A. Glucocorticoid receptor expression and antiproliferative effect of dexamethasone on human melanoma cells. Pathol Oncol Res. 2011;17(3):729–34.

    Article  CAS  PubMed  Google Scholar 

  36. Lippman M, Bolan G, Huff K. The effects of glucocorticoids and progesterone on hormone-responsive human breast cancer in long-term tissue culture. Can Res. 1976;36(12):4602–9.

    CAS  Google Scholar 

  37. Herbelet S, De Paepe B, De Bleecker JL. Description of a novel mechanism possibly explaining the antiproliferative properties of glucocorticoids in Duchenne muscular dystrophy fibroblasts based on glucocorticoid receptor GR and NFAT5. Int J Mol Sci. 2020;21(23):9225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kofler R. The molecular basis of glucocorticoid-induced apoptosis of lymphoblastic leukemia cells. Histochem Cell Biol. 2000;114:1–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by DM, FJ, JE-M, BH, ES and SA. The first draft of the manuscript was written by DM and SA. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dhouha Msalbi.

Ethics declarations

Competing interests

The authors have non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Msalbi, D., Jellali, F., Elloumi-Mseddi, J. et al. Toxicity evaluation of synthetic glucocorticoids against breast cancer cell lines MDA-MB-231, MCF-7 and human embryonic kidney HEK293. Med Oncol 40, 309 (2023). https://doi.org/10.1007/s12032-023-02189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02189-1

Keywords

Navigation