Skip to main content

Advertisement

Log in

Network pharmacology-based anti-colorectal cancer activity of piperlonguminine in the ethanolic root extract of Piper longum L

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Colorectal cancer (CRC) has the second highest incidence and fatality rates of any malignancy, at 10.2 and 9.2%, respectively. Plants and plants-based products for thousands of years have been utilized to treat cancer along with other associated health issues. Alkaloids are a valuable class of chemical compounds with great potential as new medicine possibilities. Piper longum Linn contains various types of alkaloids. In this research, the ethanolic root extract of P. longum (EREPL) is the subject of study based on network pharmacology. Two alkaloids were chosen from the gas chromatography mass spectrometry (GC–MS) analysis. However, only piperlonguminine received preference because it adhered to Lipinski's rule and depicted no toxicity. Web tools which are available online, like, Swiss ADME, pkCSMand ProTox-II were used to evaluate the pharmacokinetics and physiochemical properties of piperlonguminine. The database that SwissTargetPrediction and TCMSP maintain contains the targets for piperlonguminine. Using DisGeNET, GeneCards and Open Targets Platform databases, we were able to identify targets of CRC. The top four hub genes identified by Cytoscape are SRC, MTOR, EZH2, and MAPK3. The participation of hub genes in colorectal cancer-related pathways was examined using the Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. The colorectal cancer pathway, the ErbB signaling pathway and the mTOR signaling pathway emerged to be important. Our findings show that the hub genes are involved in the aforementioned pathways for tumor growth, which calls for their downregulation. Additionally, piperlonguminine has the potential to become a successful medicine in the future for the treatment of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The information that helps to back up the conclusions drawn from this study can be found in public databases.

Abbreviations

GC–MS:

Gas chromatography–mass spectrometry

EREPL:

Ethanolic root extract of Piper longum

KEGG:

Kyoto encyclopedia of genes and genomes

PPI:

Protein–protein interaction

ADME:

Absorption, distribution, metabolism, and excretion

HBD:

Hydrogen bond donor

HBA:

Hydrogen bond acceptor

TPSA:

Topological polar surface area

DL:

Druglikeness

MR:

Molar refractivity

HIA:

Human intestinal absorption

BBB:

Blood–brain barrier

CYP2D6:

CYP2D6 cytochrome P450 2D6

CYP3A4:

Cytochrome P450 3A4

hERG:

Human ether-a-go-go related gene

LOAEL:

Lowest-observed adverse-effect level

TCMSP:

Traditional Chinese medicine systems pharmacology database and analysis platform

STRING:

Search tool for the retrieval of interacting genes/proteins

GO:

Gene ontology

DAVID:

Database for annotation, visualization and integrated discovery

GEPIA:

Gene expression profiling interactive analysis

MW:

Molecular weight

ADMET:

Absorption, distribution, metabolism, excretion, and toxicity

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. Cancer J Clinicians. 2018;68(1):7–30.

    Article  Google Scholar 

  2. Gupta R, Bhatt LK, Johnston TP, Prabhavalkar KS. Colon cancer stem cells: potential target for the treatment of colorectal cancer. Cancer Biol Ther. 2019;20(8):1068–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yaghoubi A, Khazaei M, Avan A, Hasanian SM, Soleimanpour S. The bacterial instrument as a promising therapy for colon cancer. Int J Colorectal Dis. 2020;35:595–606.

    Article  PubMed  Google Scholar 

  4. Gelibter AJ, Caponnetto S, Urbano F, Emiliani A, Scagnoli S, Sirgiovanni G, Napoli VM, Cortesi E. Adjuvant chemotherapy in resected colon cancer: when, how and how long? Surg Oncol. 2019;1(30):100–7.

    Article  Google Scholar 

  5. Singh I, Krishna R, Israr J, Kumar A. Determination of piperine in ethyl acetate extract of Piper longum root and evaluation of antioxidant, antibacterial activity. Biochem Cell Arch. 2023;23(1):189–94.

    Article  Google Scholar 

  6. Manoj P, Soniya EV, Banerjee NS, Ravichandran P. Recent studies on well-known spice, Piper longum Linn. Nat. Prod. Radiance 2004;3(4):222–27.

    Google Scholar 

  7. Singh I, Mishra HP, Kumar P, Kumar A. In-silico based identification of novel phytomolecules from Piper Longum for drug discovery against cox-2. J Drug Alcohol Res. 2023;12:11.

    Google Scholar 

  8. Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, Khan T, Sharifi-Rad J, Ozleyen A, Turkdonmez E, Valussi M. Piper species: a comprehensive review on their phytochemistry, biological activities and applications. Molecules. 2019;24(7):1364.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kumar S, Kamboj J, Sharma S. Overview for various aspects of the health benefits of Piper longum linn fruit. J Acupuncture Meridian Studies. 2011;4(2):134–40.

    Article  Google Scholar 

  10. Chatterjee A, Dutta CP. Alkaloids of Piper longum Linn—I: structure and synthesis of piperlongumine and piperlonguminine. Tetrahedron. 1967;23(4):1769–81.

    Article  CAS  PubMed  Google Scholar 

  11. Zhu P, Qian J, Xu Z, Meng C, Liu J, Shan W, Zhu W, Wang Y, Yang Y, Zhang W, Zhang Y. Piperlonguminine and piperine analogues as TrxR inhibitors that promote ROS and autophagy and regulate p38 and Akt/mTOR signaling. J Nat Prod. 2020;83(10):3041–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chandran U, Mehendale N, Tillu G, Patwardhan B. Network pharmacology of ayurveda formulation Triphala with special reference to anti-cancer property. Comb Chem High Throughput Screening. 2015;18(9):846–54.

    Article  CAS  Google Scholar 

  13. Bi YH, Zhang LH, Chen SJ, Ling QZ. Antitumor mechanisms of curcumae rhizoma based on network pharmacology. Evid-Based Complement Altern Med. 2018;2018:1–9.

    Article  Google Scholar 

  14. Hossain R, Quispe C, Herrera-Bravo J, Islam MS, Sarkar C, Islam MT, Martorell M, Cruz-Martins N, Al-Harrasi A, Al-Rawahi A, Sharifi-Rad J. Lasia spinosa chemical composition and therapeutic potential: a literature-based review. Oxid Med Cell Longev. 2021;28:2021.

    Google Scholar 

  15. Astani A, Reichling J, Schnitzler P. Melissa officinalis extract inhibits attachment of herpes simplex virus in vitro. Chemotherapy. 2012;58(1):70–7.

    Article  CAS  PubMed  Google Scholar 

  16. Sharifi-Rad J, Quispe C, Bouyahya A, El-Menyiy N, El-Omari N, Shahinozzaman M, Ara HaqueOvey M, Koirala N, Panthi M, Ertani A, Nicola S. Ethnobotany, phytochemistry, biological activities, and health-promoting effects of the genus Bulbophyllum. Evid-Based Complement Altern Med. 2022;2022:1–15.

    Article  Google Scholar 

  17. Dhyani P, Quispe C, Sharma E, Bahukhandi A, Sati P, Attri DC, Szopa A, Sharifi-Rad J, Docea AO, Mardare I, Calina D. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022;22(1):1–20.

    Article  Google Scholar 

  18. Singh I, Krishna R, Ahmad K, Kumar A. Phytochemical characterization, antioxidant and antibacterial activity evaluation of ethanolic extract of Piper longum root. Biol Forum. 2023;15(2):94–101.

    Google Scholar 

  19. Ain QU, Khan H, Mubarak MS, Pervaiz A. Plant alkaloids as antiplatelet agent: drugs of the future in the light of recent developments. Front Pharmacol. 2016;22(7):292.

    Google Scholar 

  20. Das R, Agrawal S, Kumar P, Singh AK, Shukla PK, Bhattacharya I, Tiwari KN, Mishra SK, Tripathi AK. Network pharmacology of apigeniflavan: a novel bioactive compound of Trema orientalis Linn. in the treatment of pancreatic cancer through bioinformatics approaches. 3 Biotech. 2023;13(5):160.

    Article  PubMed  Google Scholar 

  21. Agrawal S, Das R, Singh AK, Kumar P, Shukla PK, Bhattacharya I, Tripathi AK, Mishra SK, Tiwari KN. Network pharmacology-based anti-pancreatic cancer potential of kaempferol and catechin of Trema orientalis L. through computational approach. Med Oncol. 2023;40(5):133.

    Article  CAS  PubMed  Google Scholar 

  22. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012;1(64):4–17.

    Article  Google Scholar 

  23. Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1(4):337–41.

    Article  CAS  PubMed  Google Scholar 

  24. National Center for Biotechnology Information. PubChem Compound Summary for CID 5320621, Piperlonguminine, 2023. https://pubchem.ncbi.nlm.nih.gov/compound/Piperlonguminine. Accessed 29 June 2023.

  25. Bird CW, Katritzky AR, editors. Comprehensive heterocyclic chemistry: the structure, reactions, synthesis and uses of heterocyclic compounds [in 8 volumes], vol. 4. Pergamon Press; 1984.

    Google Scholar 

  26. Arbyn M, Weiderpass E, Bruni L, de Sanjosé S, Saraiya M, Ferlay J, Bray F. Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health. 2020;8(2):e191-203.

    Article  PubMed  Google Scholar 

  27. Hayes-Jordan AA, Sandler G, Malakorn S, Xiao LC, Kopetz S, Rodriquez-Bigas M. Colon cancer in patients under 25 years old: a different disease? J Am Coll Surg. 2020;230(4):648–56.

    Article  PubMed  Google Scholar 

  28. O’Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K, Posma JM, Kinross J, Wahl E, Ruder E, Vipperla K. Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6(1):1–4.

    Article  Google Scholar 

  29. Winawer SJ. The history of colorectal cancer screening: a personal perspective. Dig Dis Sci. 2015;60:596–608.

    Article  PubMed  Google Scholar 

  30. Ma Y, Yang W, Song M, Smith-Warner SA, Yang J, Li Y, Ma W, Hu Y, Ogino S, Hu FB, Wen D. Type 2 diabetes and risk of colorectal cancer in two large US prospective cohorts. Br J Cancer. 2018;119(11):1436–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kyu HH, Bachman VF, Alexander LT, Mumford JE, Afshin A, Estep K, Veerman JL, Delwiche K, Iannarone ML, Moyer ML, Cercy K. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: systematic review and dose-response meta-analysis for the global burden of disease study 2013. BMJ. 2016 Aug 9;354.

  32. Gavrilas LI, Cruceriu D, Mocan A, Loghin F, Miere D, Balacescu O. Plant-derived bioactive compounds in colorectal cancer: insights from combined regimens with conventional chemotherapy to overcome drug-resistance. Biomedicines. 2022;10(8):1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ayez N, van der Stok EP, de Wilt H, Radema SA, van Hillegersberg R, Roumen RM, Vreugdenhil G, Tanis PJ, Punt CJ, Dejong CH, Jansen RL. Neo-adjuvant ch emotherapy followed by surgery versus surgery a lone in high-ris k patients with resectable colorectal liver m et a stases: the CHARISMA randomized multicenter clinical trial. BMC Cancer. 2015;15:1–7.

    Article  CAS  Google Scholar 

  34. Skarkova V, Kralova V, Vitovcova B, Rudolf E. Selected aspects of chemoresistance mechanisms in colorectal carcinoma—a focus on epithelial-to-mesenchymal transition, autophagy, and apoptosis. Cells. 2019;8(3):234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gundogdu G, Dodurga Y, Elmas L, Tasci SY, Karaoglan ES. Investigation of the anticancer mechanism of isoorientin isolated from Eremurus spectabilis leaves via cell cycle pathways in HT-29 human colorectal adenocarcinoma cells. Eurasian J Med. 2018;50(3):168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoo E, Lee J, Lertpatipanpong P, Ryu J, Kim CT, Park EY, Baek SJ. Anti-proliferative activity of A. Oxyphylla and its bioactive constituent nootkatone in colorectal cancer cells. BMC Cancer. 2020;20(1):1–2.

    Article  Google Scholar 

  37. Li X, Chen M, Yao Z, Du H, Zhang T, Wang H, Xie Y, Li Z. Jujuboside B induces mitochondrial-dependent apoptosis in colorectal cancer through ROS-mediated PI3K/Akt pathway in vitro and in vivo. J Funct Foods. 2021;1(87):104796.

    Article  Google Scholar 

  38. Bartnik M, Sławińska-Brych A, Żurek A, Kandefer-Szerszeń M, Zdzisińska B. 8-methoxypsoralen reduces AKT phosphorylation, induces intrinsic and extrinsic apoptotic pathways, and suppresses cell growth of SK-N-AS neuroblastoma and SW620 metastatic colon cancer cells. J Ethnopharmacol. 2017;31(207):19–29.

    Article  Google Scholar 

  39. Mohamed GA, Al-Abd AM, El-Halawany AM, Abdallah HM, Ibrahim SR. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines. J Ethnopharmacol. 2017;23(198):302–12.

    Article  Google Scholar 

  40. Windham TC, Parikh NU, Siwak DR, Summy JM, McConkey DJ, Kraker AJ, Gallick GE. Src activation regulates anoikis in human colon tumor cell lines. Oncogene. 2002;21(51):7797–807.

    Article  CAS  PubMed  Google Scholar 

  41. Chen J, Elfiky A, Han M, Chen C, Saif MW. The role of Src in colon cancer and its therapeutic implications. Clin Colorectal Cancer. 2014;13(1):5–13.

    Article  PubMed  Google Scholar 

  42. Vojtěchová M, Turečková J, Kučerová D, Šloncová E, Vachtenheim J, Tuháčková Z. Regulation of mTORC1 signaling by Src kinase activity is Akt1-independent in RSV-transformed cells. Neoplasia. 2008;10(2):99–107.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zou Z, Tao T, Li H, Zhu X. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges. Cell Biosci. 2020;10(1):1–1.

    Article  CAS  Google Scholar 

  44. Wang C, Aikemu B, Shao Y, Zhang S, Yang G, Hong H, Huang L, Jia H, Yang X, Zheng M, Sun J. Genomic signature of MTOR could be an immunogenicity marker in human colorectal cancer. BMC Cancer. 2022;22(1):818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Taherkhani A, Khodadadi P, Samie L, Azadian Z, Bayat Z. Flavonoids as strong inhibitors of MAPK3: a computational drug discovery approach. Int J Analy Chem. 2023;14:2023.

    Google Scholar 

  46. Vilorio-Marqués L, Martín V, Diez-Tascón C, González-Sevilla MF, Fernández-Villa T, Honrado E, Davila-Batista V, Molina AJ. The role of EZH2 in overall survival of colorectal cancer: a meta-analysis. Sci Rep. 2017;7(1):13806.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ohuchi M, Sakamoto Y, Tokunaga R, Kiyozumi Y, Nakamura K, Izumi D, Kosumi K, Harada K, Kurashige J, Iwatsuki M, Baba Y. Increased EZH2 expression during the adenoma-carcinoma sequence in colorectal cancer. Oncol Lett. 2018;16(4):5275–81.

    PubMed  PubMed Central  Google Scholar 

  48. Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Fellow Indrajeet Singh thankfully recognized to CSIR, New Delhi and Rama University, Kanpur for given that the amenities to carry out research.

Funding

No government, business, or nonprofit organization provided specific support for this study.

Author information

Authors and Affiliations

Authors

Contributions

IS and AK created the idea and layout for the work,which IS, RD, and AK completed gathering information, analyzing it, and interpreting the findings, fractionation, and preparing the manuscript for submission. The manuscript has been read and approved by all of the authors.

Corresponding author

Correspondence to Ajay Kumar.

Ethics declarations

Conflict of interest

The author states unequivocally that they do not have any competing interests.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Research involving human participants and/or animals

There are no experiments with human or animal subjects undertaken by the author in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, I., Das, R. & Kumar, A. Network pharmacology-based anti-colorectal cancer activity of piperlonguminine in the ethanolic root extract of Piper longum L. Med Oncol 40, 320 (2023). https://doi.org/10.1007/s12032-023-02185-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02185-5

Keywords

Navigation