Skip to main content
Log in

How gallic acid regulates molecular signaling: role in cancer drug resistance

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer is one of the deadliest and most heterogeneous diseases. Cancers often develop drug resistance, which can lead to treatment failure or recurrence. Accordingly, anticancer compounds are essential for chemotherapy-resistant cancer cells. Phenolic compounds are of interest in the development of cancer drugs due to their medicinal properties and ability to target different molecular pathways. Gallic acid (GA), as one of the main components of phenol, which is abundantly present in plant compounds such as walnut, sumac, grapes, tea leaves, oak bark, and other plant compounds, has antitumor properties. GA can prevent cancer progression, cell invasion, and metastasis by targeting molecular pathways and is an effective complement to chemotherapy drugs and combating multidrug resistance (MDR). In this review, we discuss various mechanisms related to cancer, the therapeutic potential of GA, the antitumor properties of GA in various cancers, and the targeted delivery of GA with nanocarriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee Y, Oh C, Kim J, Park M-S, Bae WK, Yoo KH, Hong S. Bioinspired nonheme iron complex that triggers mitochondrial apoptotic signalling pathway specifically for colorectal cancer cells. Chem Sci. 2022;13(3):737–47.

    Article  CAS  PubMed  Google Scholar 

  2. Maleki Dana P, Sadoughi F, Asemi Z, Yousefi B. The role of polyphenols in overcoming cancer drug resistance: a comprehensive review. Cell Mol Biol Lett. 2022;27(1):1–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sherapura A, Malojirao VH, Sharath B, Thirusangu P, Mahmood R, Kumari NS, Baliga SM, Khanum SA, Prabhakar B. Antiproliferative pharmacophore azo-hydrazone analogue BT-1F exerts death signalling pathway targeting STAT3 in solid tumour. Pharmacol Rep. 2022;74(2):353–65.

    Article  PubMed  Google Scholar 

  4. Senft D, Ze’ev AR. Adaptive stress responses during tumor metastasis and dormancy. Trends Cancer. 2016;2(8):429–42.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Loh D, Reiter RJ. Melatonin: regulation of prion protein phase separation in cancer multidrug resistance. Molecules. 2022;27(3):705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Celep AGS, Demirkaya A, Solak EK. Antioxidant and anticancer activities of gallic acid loaded sodium alginate microspheres on colon cancer. Curr Appl Phys. 2020;40:30–42.

    Article  Google Scholar 

  7. Andrade JKS, Barros RGC, Gualberto NC, de Oliveira CS, Shanmugam S, Narain N. Influence of in vitro gastrointestinal digestion and probiotic fermentation on the bioaccessibility of gallic acid and on the antioxidant potential of Brazilian fruit residues. Lwt. 2022;153:112436.

    Article  Google Scholar 

  8. Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP signaling by bioactive phytocompounds: a promising strategy to augment cancer chemotherapy and immunotherapy. Front Oncol. 2022. https://doi.org/10.3389/fonc.2022.834072.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Martin GS. Cell signaling and cancer. Cancer Cell. 2003;4(3):167–74.

    Article  CAS  PubMed  Google Scholar 

  10. Jones VS, Huang R-Y, Chen L-P, Chen Z-S, Fu L, Huang R-P. Cytokines in cancer drug resistance: cues to new therapeutic strategies. Biochim et Biophys Acta (BBA)-Rev Cancer. 2016;1865(2):255–65.

    Article  CAS  Google Scholar 

  11. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer. 2013;13(10):714–26.

    Article  CAS  PubMed  Google Scholar 

  12. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med. 2002;53(1):615–27.

    Article  CAS  PubMed  Google Scholar 

  13. Ehsani M, David FO, Baniahmad A. Androgen receptor-dependent mechanisms mediating drug resistance in prostate cancer. Cancers. 2021;13(7):1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fontana F, Anselmi M, Limonta P. Molecular mechanisms of cancer drug resistance: emerging biomarkers and promising targets to overcome tumor progression. Cancers. 2022;14:1614.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Doldi V, El Bezawy R, Zaffaroni N. MicroRNAs as epigenetic determinants of treatment response and potential therapeutic targets in prostate cancer. Cancers. 2021;13(10):2380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Z-W, Dalton WS. Tumor microenvironment and drug resistance in hematologic malignancies. Blood Rev. 2006;20(6):333–42.

    Article  PubMed  Google Scholar 

  17. Zhang T, Ma L, Wu P, Li W, Li T, Gu R, Dan X, Li Z, Fan X, Xiao Z. Gallic acid has anticancer activity and enhances the anticancer effects of cisplatin in non-small cell lung cancer A549 cells via the JAK/STAT3 signaling pathway. Oncol Rep. 2019;41(3):1779–88.

    CAS  PubMed  Google Scholar 

  18. Hui L, Chen Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett. 2015;368(1):7–13.

    Article  CAS  PubMed  Google Scholar 

  19. Dalton WS. The tumor microenvironment: focus on myeloma. Cancer Treat Rev. 2003;29:11–9.

    Article  CAS  PubMed  Google Scholar 

  20. Hazlehurst LA, Landowski TH, Dalton WS. Role of the tumor microenvironment in mediating de novo resistance to drugs and physiological mediators of cell death. Oncogene. 2003;22(47):7396–402.

    Article  CAS  PubMed  Google Scholar 

  21. Konieczkowski DJ, Johannessen CM, Garraway LA. A convergence-based framework for cancer drug resistance. Cancer Cell. 2018;33(5):801–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Garraway LA, Lander ES. Lessons from the cancer genome. Cell. 2013;153(1):17–37.

    Article  CAS  PubMed  Google Scholar 

  23. Le Magnen C, Shen MM, Abate-Shen C. Lineage plasticity in cancer progression and treatment. Annu Rev Cancer Biol. 2018;2:271–89.

    Article  PubMed  Google Scholar 

  24. Flavahan WA, Gaskell E, Bernstein BE. Epigenetic plasticity and the hallmarks of cancer. Science. 2017;357(6348):eaal2380.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhao J, Khan IA, Fronczek FR. Gallic acid. Acta Crystallogr Sect E: Struct Rep Online. 2011;67(2):o316–7.

    Article  CAS  PubMed  Google Scholar 

  26. Dowd PF, Duvick JP, Rood T. Comparative toxicity of allelochemicals and their enzymatic oxidation products to maize fungal pathogens, emphasizing Fusarium graminearum. Nat Toxins. 1997;5(5):180–5.

    Article  CAS  PubMed  Google Scholar 

  27. Gonzalez J, Cruz J, Domınguez H, Parajó J. Production of antioxidants from Eucalyptus globulus wood by solvent extraction of hemicellulose hydrolysates. Food Chem. 2004;84(2):243–51.

    Article  CAS  Google Scholar 

  28. Kubo I, Xiao P, Fujita KI. Anti-MRSA activity of alkyl gallates. Bioorg Med Chem Lett. 2002;12(2):113–6.

    Article  CAS  PubMed  Google Scholar 

  29. Ahn M-J, Kim CY, Lee JS, Kim TG, Kim SH, Lee C-K, Lee B-B, Shin C-G, Huh H, Kim J. Inhibition of HIV-1 integrase by galloyl glucoses from Terminalia chebula and flavonol glycoside gallates from Euphorbia pekinensis. Planta Med. 2002;68(05):457–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yamasaki H, Uozaki M, Katsuyama Y, Utsunomiya H, Arakawa T, Higuchi M, Higuti T, Koyama AH. Antiviral effect of octyl gallate against influenza and other RNA viruses. Int J Mol Med. 2007;19(4):685–8.

    CAS  PubMed  Google Scholar 

  31. Kim Y-J. Antimelanogenic and antioxidant properties of gallic acid. Biol Pharm Bull. 2007;30(6):1052–5.

    Article  CAS  PubMed  Google Scholar 

  32. Locatelli C, Leal PC, Yunes RA, Nunes RJ, Creczynski-Pasa TB. Gallic acid ester derivatives induce apoptosis and cell adhesion inhibition in melanoma cells: the relationship between free radical generation, glutathione depletion and cell death. Chem Biol Interact. 2009;181(2):175–84.

    Article  CAS  PubMed  Google Scholar 

  33. Arunkumar S, Ilango K, Manikandan R, Sudha M, Ramalakshmi N. Synthesis, characterisation and biological evaluation of some novel 2, 5-disubstituted-1, 3, 4-oxadiazole derivatives of gallic acid. Int J ChemTech Res. 2009;1(4):1094–9.

    CAS  Google Scholar 

  34. Vagadevi H, Joshi S, Vaidya V, Gadaginamath G. Synthesis of new 4-pyrrol-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrolle ring system: a novel class of potential antibacterial and antitubercular agents. Eur J Med Chem. 2008;43:1989–96.

    Article  Google Scholar 

  35. Abdelwahab SI. Protective mechanism of gallic acid and its novel derivative against ethanol-induced gastric ulcerogenesis: involvement of immunomodulation markers, Hsp70 and Bcl-2-associated X protein. Int Immunopharmacol. 2013;16(2):296–305.

    Article  CAS  PubMed  Google Scholar 

  36. Hsu C-L, Lo W-H, Yen G-C. Gallic acid induces apoptosis in 3T3-L1 pre-adipocytes via a Fas-and mitochondrial-mediated pathway. J Agric Food Chem. 2007;55(18):7359–65.

    Article  CAS  PubMed  Google Scholar 

  37. Yadav DK, Khan F, Negi AS. Pharmacophore modeling, molecular docking, QSAR, and in silico ADMET studies of gallic acid derivatives for immunomodulatory activity. J Mol Model. 2012;18(6):2513–25.

    Article  CAS  PubMed  Google Scholar 

  38. Kasture VS, Katti SA, Mahajan D, Wagh R, Mohan M, Kasture SB. Antioxidant and antiparkinson activity of gallic acid derivatives. Pharmacologyonline. 2009;1:385–95.

    Google Scholar 

  39. Nabavi SF, Habtemariam S, Jafari M, Sureda A, Nabavi SM. Protective role of gallic acid on sodium fluoride induced oxidative stress in rat brain. Bull Environ Contam Toxicol. 2012;89(1):73–7.

    Article  CAS  PubMed  Google Scholar 

  40. Bastianetto S, Yao ZX, Papadopoulos V, Quirion R. Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci. 2006;23:55–64.

    Article  PubMed  Google Scholar 

  41. Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, Rafeirad M. Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem. 2013;138(2–3):1028–33.

    Article  CAS  PubMed  Google Scholar 

  42. Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Farbood Y, Sarkaki A, Bavarsad K. Gallic acid prevents memory deficits and oxidative stress induced by intracerebroventricular injection of streptozotocin in rats. Pharmacol Biochem Behav. 2013;111:90–6.

    Article  CAS  PubMed  Google Scholar 

  43. Priscilla DH, Prince PSM. Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chem Biol Interact. 2009;179(2–3):118–24.

    Article  CAS  PubMed  Google Scholar 

  44. Jagan S, Ramakrishnan G, Anandakumar P, Kamaraj S, Devaki T. Antiproliferative potential of gallic acid against diethylnitrosamine-induced rat hepatocellular carcinoma. Mol Cell Biochem. 2008;319(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  45. Nabavi SF, Nabavi SM, Habtemariam S, Moghaddam AH, Sureda A, Jafari M, Latifi AM. Hepatoprotective effect of gallic acid isolated from Peltiphyllum peltatum against sodium fluoride-induced oxidative stress. Ind Crops Prod. 2013;44:50–5.

    Article  CAS  Google Scholar 

  46. Padma VV, Sowmya P, Felix TA, Baskaran R, Poornima P. Protective effect of gallic acid against lindane induced toxicity in experimental rats. Food Chem Toxicol. 2011;49(4):991–8.

    Article  Google Scholar 

  47. Nabavi SM, Habtemariam S, Nabavi SF, Sureda A, Daglia M, Moghaddam AH, Amani MA. Protective effect of gallic acid isolated from Peltiphyllum peltatum against sodium fluoride-induced oxidative stress in rat’s kidney. Mol Cell Biochem. 2013;372(1):233–9.

    Article  CAS  PubMed  Google Scholar 

  48. Inoue M, Suzuki R, Sakaguchi N, Zong LI, Takeda T, Ogihara Y, Jiang BY, Chen Y. Selective induction of cell death in cancer cells by gallic acid. Biol Pharm Bull. 1995;18(11):1526–30.

    Article  CAS  PubMed  Google Scholar 

  49. Rosso R, Vieira TO, Leal PC, Nunes RJ, Yunes RA, Creczynski-Pasa TB. Relationship between the lipophilicity of gallic acid n-alquil esters’ derivatives and both myeloperoxidase activity and HOCl scavenging. Bioorg Med Chem. 2006;14(18):6409–13.

    Article  CAS  PubMed  Google Scholar 

  50. Kato Y, Nagao A, Terao J, Osawa T. Inhibition of myeloperoxidase-catalyzed tyrosylation by phenolic antioxidants in vitro. Biosci Biotechnol Biochem. 2003;67(5):1136–9.

    Article  CAS  PubMed  Google Scholar 

  51. Kawada M, Ohno Y, Ri Y, Ikoma T, Yuugetu H, Asai T, Watanabe M, Yasuda N, Akao S, Takemura G. Anti-tumor effect of gallic acid on LL-2 lung cancer cells transplanted in mice. Anticancer Drugs. 2001;12(10):847–52.

    Article  CAS  PubMed  Google Scholar 

  52. Ashrafizadeh M, Zarrabi A, Mirzaei S, Hashemi F, Samarghandian S, Zabolian A, Hushmandi K, Ang HL, Sethi G, Kumar AP. Gallic acid for cancer therapy: molecular mechanisms and boosting efficacy by nanoscopical delivery. Food Chem Toxicol. 2021;157:112576.

    Article  CAS  Google Scholar 

  53. Mu X, Yan C, Tian Q, Lin J, Yang S. BSA-assisted synthesis of ultrasmall gallic acid–Fe (III) coordination polymer nanoparticles for cancer theranostics. Int J Nanomed. 2017;12:7207.

    Article  CAS  Google Scholar 

  54. Jara JA, Castro-Castillo V, Saavedra-Olavarría J, Peredo L, Pavanni M, Jana F, Letelier ME, Parra E, Becker MI, Morello A. Antiproliferative and uncoupling effects of delocalized, lipophilic, cationic gallic acid derivatives on cancer cell lines. Validation in vivo in singenic mice. J Med Chem. 2014;57(6):2440–54.

    Article  CAS  PubMed  Google Scholar 

  55. Jin Q, Zhu W, Jiang D, Zhang R, Kutyreff CJ, Engle JW, Huang P, Cai W, Liu Z, Cheng L. Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of 64 Cu and multimodal imaging-guided photothermal therapy. Nanoscale. 2017;9(34):12609–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu C, Li C, Jiang S, Zhang C, Tian Y. pH-responsive hollow Fe–gallic acid coordination polymer for multimodal synergistic-therapy and MRI of cancer. Nanoscale Adv. 2022;4(1):173–81.

    Article  CAS  Google Scholar 

  57. Nam B, Rho JK, Shin D-M, Son J. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover. Bioorg Med Chem Lett. 2016;26(19):4571–5.

    Article  CAS  PubMed  Google Scholar 

  58. Kang DY, Sp N, Jo ES, Rugamba A, Hong DY, Lee HG, Yoo J-S, Liu Q, Jang K-J, Yang YM. The inhibitory mechanisms of tumor PD-L1 expression by natural bioactive gallic acid in non-small-cell lung cancer (NSCLC) cells. Cancers. 2020;12(3):727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ji B-C, Hsu W-H, Yang J-S, Hsia T-C, Lu C-C, Chiang J-H, Yang J-L, Lin C-H, Lin J-J, Suen L-JW. Gallic acid induces apoptosis via caspase-3 and mitochondrion-dependent pathways in vitro and suppresses lung xenograft tumor growth in vivo. J Agric Food Chem. 2009;57(16):7596–604.

    Article  CAS  PubMed  Google Scholar 

  60. Kaur M, Velmurugan B, Rajamanickam S, Agarwal R, Agarwal C. Gallic acid, an active constituent of grape seed extract, exhibits anti-proliferative, pro-apoptotic and anti-tumorigenic effects against prostate carcinoma xenograft growth in nude mice. Pharm Res. 2009;26(9):2133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Maurya DK, Nandakumar N, Devasagayam TPA. Anticancer property of gallic acid in A549, a human lung adenocarcinoma cell line, and possible mechanisms. J Clin Biochem Nutr. 2010;48(1):85–90.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ohno Y, Fukuda K, Takemura G, Toyota M, Watanabe M, Yasuda N, Xinbin Q, Maruyama R, Akao S, Gotou K. Induction of apoptosis by gallic acid in lung cancer cells. Anticancer Drugs. 1999;10(9):845–52.

    Article  CAS  PubMed  Google Scholar 

  63. Wang D, Bao B. Gallic acid impedes non-small cell lung cancer progression via suppression of EGFR-dependent CARM1-PELP1 complex. Drug Des, Dev Ther. 2020;14:1583–92.

    Article  CAS  Google Scholar 

  64. Weng Y-P, Hung P-F, Ku W-Y, Chang C-Y, Wu B-H, Wu M-H, Yao J-Y, Yang J-R, Lee C-H. The inhibitory activity of gallic acid against DNA methylation: application of gallic acid on epigenetic therapy of human cancers. Oncotarget. 2018;9(1):361.

    Article  PubMed  Google Scholar 

  65. Choi K-C, Lee Y-H, Jung MG, Kwon SH, Kim M-J, Jun WJ, Lee J, Lee JM, Yoon H-G. Gallic acid suppresses lipopolysaccharide-induced nuclear factor-κB signaling by preventing RelA acetylation in A549 lung cancer Cellsgallic acid is a histone acetyltransferase inhibitor. Mol Cancer Res. 2009;7(12):2011–21.

    Article  CAS  PubMed  Google Scholar 

  66. Wang R, Ma L, Weng D, Yao J, Liu X, Jin F. Gallic acid induces apoptosis and enhances the anticancer effects of cisplatin in human small cell lung cancer H446 cell line via the ROS-dependent mitochondrial apoptotic pathway. Oncol Rep. 2016;35(5):3075–83.

    Article  CAS  PubMed  Google Scholar 

  67. You BR, Kim SZ, Kim SH, Park WH. Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion. Mol Cell Biochem. 2011;357:295–303.

    Article  CAS  PubMed  Google Scholar 

  68. Sontakke AD, Fopase R, Pandey LM, Purkait MK. Development of graphene oxide nanoscrolls imparted nano-delivery system for the sustained release of gallic acid. Appl Nanosci. 2022;12(9):2733–51.

    Article  CAS  Google Scholar 

  69. Rosman R, Saifullah B, Maniam S, Dorniani D, Hussein MZ, Fakurazi S. Improved anticancer effect of magnetite nanocomposite formulation of gallic acid (Fe3O4-PEG-GA) against lung, breast and colon cancer cells. Nanomaterials. 2018;8(2):83.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Gowda SS, Rajasowmiya S, Vadivel V, Devi SB, Jerald AC, Marimuthu S, Devipriya N. Gallic acid-coated sliver nanoparticle alters the expression of radiation-induced epithelial-mesenchymal transition in non-small lung cancer cells. Toxicol In Vitro. 2018;52:170–7.

    Article  Google Scholar 

  71. Al-Samydai A, Al Qaraleh M, Al Azzam KM, Mayyas A, Nsairat H, Hajleh MNA, Al-Halaseh LK, Al-Karablieh N, Akour A, Alshaik F. Formulating co-loaded nanoliposomes with gallic acid and quercetin for enhanced cancer therapy. Heliyon. 2023;9:e17267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Heidarian E, Keloushadi M, Ghatreh-Samani K, Jafari-Dehkordi E. Gallic acid inhibits invasion and reduces IL-6 gene expression, PSTAT3, PERK1/2, and pAKT cellular signaling proteins in human prostate cancer DU-145 cells. Int J Cancer Manag. 2017. https://doi.org/10.5812/ijcm.9163.

    Article  Google Scholar 

  73. Yang J-T, Lee I-N, Chen C-H, Lu F-J, Chung C-Y, Lee M-H, Cheng Y-C, Chen K-T, Peng J-Y, Chen C-H. Gallic acid enhances the anti-cancer effect of temozolomide in human glioma cell line via inhibition of Akt and p38-MAPK pathway. Processes. 2022;10(3):448.

    Article  CAS  Google Scholar 

  74. Liu K-C, Huang A-C, Wu P-P, Lin H-Y, Chueh F-S, Yang J-S, Lu C-C, Chiang J-H, Meng M, Chung J-G. Gallic acid suppresses the migration and invasion of PC-3 human prostate cancer cells via inhibition of matrix metalloproteinase-2 and-9 signaling pathways. Oncol Rep. 2011;26(1):177–84.

    PubMed  Google Scholar 

  75. Liu KC, Ho HC, Huang AC, Ji BC, Lin HY, Chueh FS, Yang JS, Lu CC, Chiang JH, Meng M. Gallic acid provokes DNA damage and suppresses DNA repair gene expression in human prostate cancer PC-3 cells. Environ Toxicol. 2013;28(10):579–87.

    Article  CAS  PubMed  Google Scholar 

  76. Veluri R, Singh RP, Liu Z, Thompson JA, Agarwal R, Agarwal C. Fractionation of grape seed extract and identification of gallic acid as one of the major active constituents causing growth inhibition and apoptotic death of DU145 human prostate carcinoma cells. Carcinogenesis. 2006;27(7):1445–53.

    Article  CAS  PubMed  Google Scholar 

  77. Jang Y-G, Ko E-B, Choi K-C. Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J Nutr Biochem. 2020;84:108444.

    Article  CAS  PubMed  Google Scholar 

  78. Agarwal C, Tyagi A, Agarwal R. Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Mol Cancer Ther. 2006;5(12):3294–302.

    Article  CAS  PubMed  Google Scholar 

  79. Kaur M, Agarwal R, Agarwal C. Gallic acid, a major active constituent of grape seed extract, induces apoptotic death via the activation of p38 MAPK pathway in human prostate carcinoma DU145 cells. Cancer Res. 2007;67(9_Supplement):4967–4967.

    Google Scholar 

  80. Reddivari L, Vanamala J, Safe SH, Miller JC Jr. The bioactive compounds α-chaconine and gallic acid in potato extracts decrease survival and induce apoptosis in LNCaP and PC3 prostate cancer cells. Nutr Cancer. 2010;62(5):601–10.

    Article  CAS  PubMed  Google Scholar 

  81. Russell LH, Mazzio E, Badisa RB, Zhu Z-P, Agharahimi M, Oriaku ET, Goodman CB. Autoxidation of gallic acid induces ROS-dependent death in human prostate cancer LNCaP cells. Anticancer Res. 2012;32(5):1595–602.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Heidarian E, Keloushadi M, Ghatreh-Samani K, Valipour P. The reduction of IL-6 gene expression, pAKT, pERK1/2, pSTAT3 signaling pathways and invasion activity by gallic acid in prostate cancer PC3 cells. Biomed Pharmacother. 2016;84:264–9.

    Article  CAS  PubMed  Google Scholar 

  83. Zhu X, Xu X, Liu F, Jin J, Liu L, Zhi Y, Chen Z-W, Zhou Z-S, Yu J. Green synthesis of graphene nanosheets and their in vitro cytotoxicity against human prostate cancer (DU 145) cell lines. Nanomater Nanotechnol. 2017;7:1847980417702794.

    Article  CAS  Google Scholar 

  84. Tangthong T, Piroonpan T, Thipe VC, Khoobchandani M, Katti K, Katti KV, Pasanphan W. Bombesin peptide conjugated water-soluble chitosan gallate—a new nanopharmaceutical architecture for the rapid one-pot synthesis of prostate tumor targeted gold nanoparticles. Int J Nanomed. 2021;16:6957–81.

    Article  CAS  Google Scholar 

  85. Wang K, Zhu X, Zhang K, Zhu L, Zhou F. Investigation of gallic acid induced anticancer effect in human breast carcinoma MCF-7 cells. J Biochem Mol Toxicol. 2014;28(9):387–93.

    Article  CAS  PubMed  Google Scholar 

  86. Aborehab NM, Elnagar MR, Waly NE. Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF-7 human breast cancer cell line. J Biochem Mol Toxicol. 2021;35(2):e22638.

    Article  CAS  PubMed  Google Scholar 

  87. Chen Y-J, Lin K-N, Jhang L-M, Huang C-H, Lee Y-C, Chang L-S. Gallic acid abolishes the EGFR/Src/Akt/Erk-mediated expression of matrix metalloproteinase-9 in MCF-7 breast cancer cells. Chem Biol Interact. 2016;252:131–40.

    Article  CAS  PubMed  Google Scholar 

  88. Hsu J-D, Kao S-H, Ou T-T, Chen Y-J, Li Y-J, Wang C-J. Gallic acid induces G2/M phase arrest of breast cancer cell MCF-7 through stabilization of p27Kip1 attributed to disruption of p27Kip1/Skp2 complex. J Agric Food Chem. 2011;59(5):1996–2003.

    Article  CAS  PubMed  Google Scholar 

  89. Hanieh H, Ibrahim H-IM, Mohammed M, Alwassil OI, Abukhalil MH, Farhan M. Activation of aryl hydrocarbon receptor signaling by gallic acid suppresses progression of human breast cancer in vitro and in vivo. Phytomedicine. 2022;96:153817.

    Article  CAS  PubMed  Google Scholar 

  90. Banerjee N, Kim H, Krenek K, Talcott ST, Mertens-Talcott SU. Mango polyphenolics suppressed tumor growth in breast cancer xenografts in mice: role of the PI3K/AKT pathway and associated microRNAs. Nutr Res. 2015;35(8):744–51.

    Article  CAS  PubMed  Google Scholar 

  91. García-Rivera D, Delgado R, Bougarne N, Haegeman G, Berghe WV. Gallic acid indanone and mangiferin xanthone are strong determinants of immunosuppressive anti-tumour effects of Mangifera indica L. bark in MDA-MB231 breast cancer cells. Cancer Lett. 2011;305(1):21–31.

    Article  PubMed  Google Scholar 

  92. Moghtaderi H, Sepehri H, Delphi L, Attari F. Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA-MB-231. BioImpacts: BI. 2018;8(3):185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lee H-L, Lin C-S, Kao S-H, Chou M-C. Gallic acid induces G1 phase arrest and apoptosis of triple-negative breast cancer cell MDA-MB-231 via p38 mitogen-activated protein kinase/p21/p27 axis. Anticancer Drugs. 2017;28(10):1150–6.

    Article  CAS  PubMed  Google Scholar 

  94. Chen Y-J, Lee Y-C, Huang C-H, Chang L-S. Gallic acid-capped gold nanoparticles inhibit EGF-induced MMP-9 expression through suppression of p300 stabilization and NFκB/c-Jun activation in breast cancer MDA-MB-231 cells. Toxicol Appl Pharmacol. 2016;310:98–107.

    Article  CAS  PubMed  Google Scholar 

  95. Perchellet J-P, Gali HU, Perchellet EM, Klish DS, Armbrust AD. Antitumor-promoting activities of tannic acid, ellagic acid, and several gallic acid derivatives in mouse skin. Plant Polyphen: Synth, Prop, Signif. 1992. https://doi.org/10.1007/978-1-4615-3476-1_47.

    Article  Google Scholar 

  96. Lo C, Lai T-Y, Yang J-S, Yang J-H, Ma Y-S, Weng S-W, Lin H-Y, Chen H-Y, Lin J-G, Chung J-G. Gallic acid inhibits the migration and invasion of A375. S2 human melanoma cells through the inhibition of matrix metalloproteinase-2 and Ras. Melanoma Res. 2011;21(4):267–73.

    Article  CAS  PubMed  Google Scholar 

  97. Lo C, Lai T-Y, Yang J-H, Yang J-S, Ma Y-S, Weng S-W, Chen Y-Y, Lin J-G, Chung J-G. Gallic acid induces apoptosis in A375. S2 human melanoma cells through caspase-dependent and-independent pathways. Int J Oncol. 2010;37(2):377–85.

    CAS  PubMed  Google Scholar 

  98. Wang F, Ren G, Li F, Wang B, Yang Y, Ma X, Niu Y, Ye Y, Chen X, Fan S. Overexpression of gmsnrk1, a soybean sucrose non-fermenting-1 related protein kinase 1 gene, results in directional alteration of carbohydrate metabolism in transgenic arabidopsis. Biotechnol Biotechnol Equip. 2018;32(4):835–45.

    Article  CAS  Google Scholar 

  99. Subramanian V, Venkatesan B, Tumala A, Vellaichamy E. Topical application of Gallic acid suppresses the 7, 12-DMBA/Croton oil induced two-step skin carcinogenesis by modulating anti-oxidants and MMP-2/MMP-9 in Swiss albino mice. Food Chem Toxicol. 2014;66:44–55.

    Article  CAS  PubMed  Google Scholar 

  100. Santhini E, Ramji B, Viswanadha Vijaya P. Gallic acid isolated from pomegranate peel extract induces reactive oxygen species mediated apoptosis in A549 cell line. J Cancer Ther. 2011. https://doi.org/10.4236/jct.2011.25085.

    Article  Google Scholar 

  101. Kamatham S, Kumar N, Gudipalli P. Isolation and characterization of gallic acid and methyl gallate from the seed coats of Givotia rottleriformis Griff. and their anti-proliferative effect on human epidermoid carcinoma A431 cells. Toxicol Rep. 2015;2:520–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lima KG, Krause GC, Schuster AD, Catarina AV, Basso BS, De Mesquita FC, Pedrazza L, Marczak ES, Martha BA, Nunes FB. Gallic acid reduces cell growth by induction of apoptosis and reduction of IL-8 in HepG2 cells. Biomed Pharmacother. 2016;84:1282–90.

    Article  CAS  PubMed  Google Scholar 

  103. Aglan HA, Ahmed HH, El-Toumy SA, Mahmoud NS. Gallic acid against hepatocellular carcinoma: an integrated scheme of the potential mechanisms of action from in vivo study. Tumor Biol. 2017;39(6):1010428317699127.

    Article  Google Scholar 

  104. Huang C-Y, Chang Y-J, Wei P-L, Hung C-S, Wang W. Methyl gallate, gallic acid-derived compound, inhibit cell proliferation through increasing ROS production and apoptosis in hepatocellular carcinoma cells. PloS one. 2021;16(3):e0248521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sun G, Zhang S, Xie Y, Zhang Z, Zhao W. Gallic acid as a selective anticancer agent that induces apoptosis in SMMC-7721 human hepatocellular carcinoma cells. Oncol Lett. 2016;11(1):150–8.

    Article  CAS  PubMed  Google Scholar 

  106. Shi C-J, Zheng Y-B, Pan F-F, Zhang F-W, Zhuang P, Fu W-M. Gallic acid suppressed tumorigenesis by an LncRNA MALAT1-Wnt/β-catenin axis in hepatocellular carcinoma. Front Pharmacol. 2021;12:2517.

    Article  Google Scholar 

  107. Varela-Rodríguez L, Sánchez-Ramírez B, Hernández-Ramírez VI, Varela-Rodríguez H, Castellanos-Mijangos RD, González-Horta C, Chávez-Munguía B, Talamás-Rohana P. Effect of Gallic acid and myricetin on ovarian cancer models: a possible alternative antitumoral treatment. BMC Complement Med Ther. 2020;20(1):110.

    Article  PubMed  PubMed Central  Google Scholar 

  108. He Z, Chen AY, Rojanasakul Y, Rankin GO, Chen YC. Gallic acid, a phenolic compound, exerts anti-angiogenic effects via the PTEN/AKT/HIF-1α/VEGF signaling pathway in ovarian cancer cells. Oncol Rep. 2016;35(1):291–7.

    Article  CAS  PubMed  Google Scholar 

  109. Chia Y-C, Rajbanshi R, Calhoun C, Chiu RH. Anti-neoplastic effects of gallic acid, a major component of Toona sinensis leaf extract, on oral squamous carcinoma cells. Molecules. 2010;15(11):8377–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Santos EMS, da Rocha RG, Santos HO, Guimarães TA, de Carvalho Fraga CA, da Silveira LH, Batista PR, de Oliveira PSL, Melo GA, Santos SH. Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway. Pathol-Res Prac. 2018;214(1):30–7.

    Article  CAS  Google Scholar 

  111. Guimaraes TA, Farias LC, Fraga CA, Feltenberger JD, Melo GA, Coletta RD, Souza Santos SH, de Paula A, Guimaraes AL. Evaluation of the antineoplastic activity of gallic acid in oral squamous cell carcinoma under hypoxic conditions. Anticancer Drugs. 2016;27(5):407–16.

    Article  CAS  PubMed  Google Scholar 

  112. Kuo C-L, Lai K-C, Ma Y-S, Weng S-W, Lin J-P, Chung J-G. Gallic acid inhibits migration and invasion of SCC-4 human oral cancer cells through actions of NF-κB, Ras and matrix metalloproteinase-2 and-9. Oncol Rep. 2014;32(1):355–61.

    Article  CAS  PubMed  Google Scholar 

  113. Inoue M, Suzuki R, Koide T, Sakaguchi N, Ogihara Y, Yabu Y. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem Biophys Res Commun. 1994;204(2):898–904.

    Article  CAS  PubMed  Google Scholar 

  114. Paolini A, Curti V, Pasi F, Mazzini G, Nano R, Capelli E. Gallic acid exerts a protective or an anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by miRNAs. Int J Oncol. 2015;46(4):1491–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Subramanian A, John A, Vellayappan M, Balaji A, Jaganathan S, Supriyanto E, Yusof M. Gallic acid: prospects and molecular mechanisms of its anticancer activity. RSC Adv. 2015;5(45):35608–21.

    Article  CAS  Google Scholar 

  116. Huang P-J, Hseu Y-C, Lee M-S, Kumar KS, Wu C-R, Hsu L-S, Liao J-W, Cheng I-S, Kuo Y-T, Huang S-Y. In vitro and in vivo activity of gallic acid and Toona sinensis leaf extracts against HL-60 human premyelocytic leukemia. Food Chem Toxicol. 2012;50(10):3489–97.

    Article  CAS  PubMed  Google Scholar 

  117. Gu R, Zhang M, Meng H, Xu D, Xie Y. Gallic acid targets acute myeloid leukemia via Akt/mTOR-dependent mitochondrial respiration inhibition. Biomed Pharmacother. 2018;105:491–7.

    Article  CAS  PubMed  Google Scholar 

  118. Sourani Z, Pourgheysari B, Beshkar P, Shirzad H, Shirzad M. Gallic acid inhibits proliferation and induces apoptosis in lymphoblastic leukemia cell line (C121). Iran J Med Sci. 2016;41(6):525.

    PubMed  Google Scholar 

  119. Yeh R-D, Chen J-C, Lai T-Y, Yang J-S, Yu C-S, Chiang J-H, Lu C-C, Yang S-T, Yu C-C, Chang S-J. Gallic acid induces G0/G1 phase arrest and apoptosis in human leukemia HL-60 cells through inhibiting cyclin D and E, and activating mitochondria-dependent pathway. Anticancer Res. 2011;31(9):2821–32.

    CAS  PubMed  Google Scholar 

  120. Reddy TC, Reddy DB, Aparna A, Arunasree KM, Gupta G, Achari C, Reddy G, Lakshmipathi V, Subramanyam A, Reddanna P. Anti-leukemic effects of gallic acid on human leukemia K562 cells: downregulation of COX-2, inhibition of BCR/ABL kinase and NF-κB inactivation. Toxicol In Vitro. 2012;26(3):396–405.

    Article  PubMed  Google Scholar 

  121. Shao Y, Luo W, Guo Q, Li X, Zhang Q, Li J. In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nano-system for leukemia therapy. Drug Des, Dev Ther. 2019;13:2043–55.

    Article  CAS  Google Scholar 

  122. Liang C-Z, Zhang X, Li H, Tao Y-Q, Tao L-J, Yang Z-R, Zhou X-P, Shi Z-L, Tao H-M. Gallic acid induces the apoptosis of human osteosarcoma cells in vitro and in vivo via the regulation of mitogen-activated protein kinase pathways. Cancer Biother Radiopharm. 2012;27(10):701–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Liao C-L, Lai K-C, Huang A-C, Yang J-S, Lin J-J, Wu S-H, Wood WG, Lin J-G, Chung J-G. Gallic acid inhibits migration and invasion in human osteosarcoma U-2 OS cells through suppressing the matrix metalloproteinase-2/-9, protein kinase B (PKB) and PKC signaling pathways. Food Chem Toxicol. 2012;50(5):1734–40.

    Article  CAS  PubMed  Google Scholar 

  124. Ying H, Wang H, Jiang G, Tang H, Li L, Zhang J. Injectable agarose hydrogels and doxorubicin-encapsulated iron-gallic acid nanoparticles for chemodynamic-photothermal synergistic therapy against osteosarcoma. Front Chem. 2022;10:1045612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhao B, Hu M. Gallic acid reduces cell viability, proliferation, invasion and angiogenesis in human cervical cancer cells. Oncol Lett. 2013;6(6):1749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Tan S, Guan X, Grün C, Zhou Z, Schepers U, Nick P. Gallic acid induces mitotic catastrophe and inhibits centrosomal clustering in HeLa cells. Toxicol In Vitro. 2015;30(1):506–13.

    Article  CAS  PubMed  Google Scholar 

  127. Aborehab NM, Osama N. Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int. 2019;19:1–13.

    Article  CAS  Google Scholar 

  128. Fathy MM, Elfiky AA, Bashandy YS, Hamdy MM, Elgharib AM, Ibrahim IM, Kamal RT, Mohamed AS, Rashad AM, Ahmed OS. An insight into synthesis and antitumor activity of citrate and gallate stabilizing gold nanospheres. Sci Rep. 2023;13(1):2749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Daduang J, Palasap A, Daduang S, Boonsiri P, Suwannalert P, Limpaiboon T. Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells. Asian Pac J Cancer Prev. 2015;16(1):169–74.

    Article  PubMed  Google Scholar 

  130. Faried A, Kurnia D, Faried L, Usman N, Miyazaki T, Kato H, Kuwano H. Anticancer effects of gallic acid isolated from Indonesian herbal medicine, Phaleria macrocarpa (Scheff.) Boerl, on human cancer cell lines. Int J Oncol. 2007;30(3):605–13.

    CAS  PubMed  Google Scholar 

  131. Sun G-L, Wang D. Gallic acid from Terminalia chebula inhibited the growth of esophageal carcinoma cells by suppressing the Hippo signal pathway. Iran J Basic Med Sci. 2020;23(11):1401.

    PubMed  PubMed Central  Google Scholar 

  132. Lu Y, Jiang F, Jiang H, Wu K, Zheng X, Cai Y, Katakowski M, Chopp M, To S-ST. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur J Pharmacol. 2010;641(2–3):102–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ho H-H, Chang C-S, Ho W-C, Liao S-Y, Wu C-H, Wang C-J. Anti-metastasis effects of gallic acid on gastric cancer cells involves inhibition of NF-κB activity and downregulation of PI3K/AKT/small GTPase signals. Food Chem Toxicol. 2010;48(8–9):2508–16.

    Article  CAS  PubMed  Google Scholar 

  134. Yoshioka K, Kataoka T, Hayashi T, Hasegawa M, Ishi Y, Hibasami H. Induction of apoptosis by gallic acid in human stomach cancer KATO III and colon adenocarcinoma COLO 205 cell lines. Oncol Rep. 2000;7(6):1221–4.

    CAS  PubMed  Google Scholar 

  135. Forester SC, Waterhouse AL. Gut metabolites of anthocyanins, gallic acid, 3-O-methylgallic acid, and 2, 4, 6-trihydroxybenzaldehyde, inhibit cell proliferation of Caco-2 cells. J Agric Food Chem. 2010;58(9):5320–7.

    Article  CAS  PubMed  Google Scholar 

  136. Subramanian AP, Jaganathan SK, Mandal M, Supriyanto E, Muhamad II. Gallic acid induced apoptotic events in HCT-15 colon cancer cells. World J Gastroenterol. 2016;22(15):3952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Nakayama H, Nakahara M, Matsugi E, Soda M, Hattori T, Hara K, Usami A, Kusumoto C, Higashiyama S, Kitaichi K. Protective effect of ferulic acid against hydrogen peroxide induced apoptosis in PC12 cells. Molecules. 2020;26(1):90.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Giftson JS, Jayanthi S, Nalini N. Chemopreventive efficacy of gallic acid, an antioxidant and anticarcinogenic polyphenol, against 1, 2-dimethyl hydrazine induced rat colon carcinogenesis. Invest New Drugs. 2010;28:251–9.

    Article  CAS  PubMed  Google Scholar 

  139. Hong Z, Tang P, Liu B, Ran C, Yuan C, Zhang Y, Lu Y, Duan X, Yang Y, Wu H. Ferroptosis-related genes for overall survival prediction in patients with colorectal cancer can be inhibited by gallic acid. Int J Biol Sci. 2021;17(4):942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Senapathy JG, Jayanthi S, Viswanathan P, Umadevi P, Nalini N. Effect of gallic acid on xenobiotic metabolizing enzymes in 1, 2-dimethyl hydrazine induced colon carcinogenesis in Wistar rats–a chemopreventive approach. Food Chem Toxicol. 2011;49(4):887–92.

    Article  Google Scholar 

  141. Priyadarshi K, Shirsath K, Waghela NB, Sharma A, Kumar A, Pathak C. Surface modified PAMAM dendrimers with gallic acid inhibit, cell proliferation, cell migration and inflammatory response to augment apoptotic cell death in human colon carcinoma cells. J Biomol Struct Dyn. 2021;39(18):6853–69.

    Article  CAS  PubMed  Google Scholar 

  142. Bulbul MV, Karabulut S, Kalender M, Keskin I. Effects of gallic acid on endometrial cancer cells in two and three dimensional cell culture models. Asian Pac J Cancer Prev: APJCP. 2021;22(6):1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zeng M, Su Y, Li K, Jin D, Li Q, Li Y, Zhou B. Gallic acid inhibits bladder cancer T24 cell progression through mitochondrial dysfunction and PI3K/Akt/NF-κB signaling suppression. Front Pharmacol. 2020;11:1222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liao C-C, Chen S-C, Huang H-P, Wang C-J. Gallic acid inhibits bladder cancer cell proliferation and migration via regulating fatty acid synthase (FAS). J Food Drug Anal. 2018;26(2):620–7.

    Article  CAS  PubMed  Google Scholar 

  145. Ou TT, Wang CJ, Lee YS, Wu CH, Lee HJ. Gallic acid induces G2/M phase cell cycle arrest via regulating 14-3-3β release from Cdc25C and Chk2 activation in human bladder transitional carcinoma cells. Mol Nutr Food Res. 2010;54(12):1781–90.

    Article  CAS  PubMed  Google Scholar 

  146. Liang W, Li X, Li Y, Li C, Gao B, Gan H, Li S, Shen J, Kang J, Ding S. Gallic acid induces apoptosis and inhibits cell migration by upregulating miR-518b in SW1353 human chondrosarcoma cells. Int J Oncol. 2014;44(1):91–8.

    Article  CAS  PubMed  Google Scholar 

  147. Pang J-HS, Yen J-H, Wu H-T, Huang S-T. Gallic acid inhibited matrix invasion and AP-1/ETS-1-mediated MMP-1 transcription in human nasopharyngeal carcinoma cells. Int J Mol Sci. 2017;18(7):1354.

    Article  PubMed  Google Scholar 

  148. Liu Z, Li D, Yu L, Niu F. Gallic acid as a cancer-selective agent induces apoptosis in pancreatic cancer cells. Chemotherapy. 2012;58(3):185–94.

    Article  CAS  PubMed  Google Scholar 

  149. Kumar S, Das A. Elucidation of natural compounds Gallic acid and Shikonin for the treatment of HNSC cancer by targeting immune suppressor and tumour progressor genes. Vegetos. 2022;35:880–94.

    Article  Google Scholar 

  150. Kim N-S, Jeong S-I, Hwang B-S, Lee Y-E, Kang S-H, Lee H-C, Oh C-H. Gallic acid inhibits cell viability and induces apoptosis in human monocytic cell line U937. J Med Food. 2011;14(3):240–6.

    Article  CAS  PubMed  Google Scholar 

  151. Jiang Z, Jin H, Sun S, Chen C, Zhang J, Guo Z, Liu X. Effects of gallic acid biofabricated rGO nanosheets combined with radiofrequency radiation for the treatment of renal cell carcinoma. Mater Sci Eng, C. 2018;93:846–52.

    Article  CAS  Google Scholar 

  152. Peng W, Luo P, Gui D, Jiang W, Wu H, Zhang J. Enhanced anticancer effect of fabricated gallic acid/CdS on the rGO nanosheets on human glomerular mesangial (IP15) and epithelial proximal (HK2) kidney cell lines-Cytotoxicity investigations. J Photochem Photobiol, B. 2018;178:243–8.

    Article  CAS  PubMed  Google Scholar 

  153. Sánchez-Carranza JN, Díaz JF, Redondo-Horcajo M, Barasoain I, Alvarez L, Lastres P, Romero-Estrada A, Aller P, González-Maya L. Gallic acid sensitizes paclitaxel-resistant human ovarian carcinoma cells through an increase in reactive oxygen species and subsequent downregulation of ERK activation. Oncol Rep. 2018;39(6):3007–14.

    PubMed  Google Scholar 

  154. Nowakowska A, Tarasiuk J. Comparative effects of selected plant polyphenols, gallic acid and epigallocatechin gallate, on matrix metalloproteinases activity in multidrug resistant MCF7/DOX breast cancer cells. Acta Biochim Pol. 2016;63(3):571–5.

    Article  CAS  PubMed  Google Scholar 

  155. Maruszewska A, Tarasiuk J. Antitumour effects of selected plant polyphenols, gallic acid and ellagic acid, on sensitive and multidrug-resistant leukaemia HL60 cells. Phytother Res. 2019;33(4):1208–21.

    Article  CAS  PubMed  Google Scholar 

  156. Dong Z, Hao Y, Li Q, Yang Z, Zhu Y, Liu Z, Feng L. Metal-polyphenol-network coated CaCO 3 as pH-responsive nanocarriers to enable effective intratumoral penetration and reversal of multidrug resistance for augmented cancer treatments. Nano Res. 2020;13:3057–67.

    Article  CAS  Google Scholar 

  157. Phan AN, Hua TN, Kim M-K, Vo VT, Choi J-W, Kim H-W, Rho JK, Kim KW, Jeong Y. Gallic acid inhibition of Src-Stat3 signaling overcomes acquired resistance to EGF receptor tyrosine kinase inhibitors in advanced non-small cell lung cancer. Oncotarget. 2016;7(34):54702.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Alfei S, Marengo B, Zuccari G, Turrini F, Domenicotti C. Dendrimer nanodevices and gallic acid as novel strategies to fight chemoresistance in neuroblastoma cells. Nanomaterials. 2020;10(6):1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ojeaburu S, Oriakhi K. Hepatoprotective, antioxidant and anti-inflammatory potentials of gallic acid in carbon tetrachloride-induced hepatic damage in Wistar rats. Toxicol Rep. 2021;8:177–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kim JW, Kim SH, Mariappan R, Moon D, Kim J, Yoon S-P. Anti-cancer effects of the aqueous extract of Orostachys japonica A. Berger on 5-fluorouracil-resistant colorectal cancer via MAPK signalling pathways in vitro and in vivo. J Ethnopharmacol. 2021;280:114412.

    Article  CAS  PubMed  Google Scholar 

  161. Al Balushi N, Hassan SI, Abdullah N, Al Dhahli B, Al Bahlani S, Ahmed I, Tsang BK, Dobretsov S, Tamimi Y, Burney IA. Addition of gallic acid overcomes resistance to cisplatin in ovarian cancer cell lines. Asian Pac J Cancer Prev. 2022;23:2661–2669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Han L, Guo X, Bian H, Yang L, Chen Z, Zang W, Yang J. Guizhi fuling wan, a traditional chinese herbal formula, sensitizes cisplatin-resistant human ovarian cancer cells through inactivation of the PI3K/AKT/mTOR pathway. Evidence-Based Complement Altern Med. 2016;2016:11.

    Article  Google Scholar 

Download references

Funding

No funding was received for this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed Hossein Shahcheraghi or Haroon Khan.

Ethics declarations

Conflict of interest

The authors of this article have no conflict of interest.

Ethical approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, S., Ghanbari, F., Lotfi, M. et al. How gallic acid regulates molecular signaling: role in cancer drug resistance. Med Oncol 40, 308 (2023). https://doi.org/10.1007/s12032-023-02178-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02178-4

Keywords

Navigation