Skip to main content
Log in

Colorectal cancer cell membrane biomimetic ferroferric oxide nanomaterials for homologous bio-imaging and chemotherapy application

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The research of nanomaterials for bio-imaging and theranostic are very active nowadays with unprecedented advantages in nanomedicine. Homologous targeting and bio-imaging greatly improve the ability of targeted drug delivery and enhance active targeting and treatment ability of nanomedicine for the tumor. In this work, lycorine hydrochloride (LH) and magnetic iron oxide nanoparticles coated with a colorectal cancer (CRC) cell membrane (LH-Fe3O4@M) were prepared, for homologous targeting, magnetic resonance imaging (MRI), and chemotherapy. Results showed that the LH-Fe3O4@M and Fe3O4@M intensity at HT29 tumor was significantly higher than that Fe3O4@PEG, proving the superior selectivity of cancer cell membrane-camouflaged nanomedicine for homologous tumors and the MRI effect of darkening contrast enhancement were remarkable at HT29 tumor. The LH-Fe3O4@M exhibited excellent chemotherapy effect in CRC models as well as LH alone and achieved a high tumor ablation rate but no damage to normal tissues and cells. Therefore, our biomimetic system achieved a homologous targeting, bio-imaging, and efficient therapeutic effect of CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data presented in this study are contained within the article and the Supplementary Materials.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Araghi M, Soerjomataram I, Jenkins M, Brierley J, Morris E, Bray F, et al. Global trends in colorectal cancer mortality: projections to the year 2035. Int J Cancer. 2019;144(12):2992–3000. https://doi.org/10.1002/ijc.32055.

    Article  CAS  PubMed  Google Scholar 

  3. Schreuders EH, Ruco A, Rabeneck L, Schoen RE, Sung JJ, Young GP, et al. Colorectal cancer screening: a global overview of existing programmes. Gut. 2015;64(10):1637–49. https://doi.org/10.1136/gutjnl-2014-309086.

    Article  PubMed  Google Scholar 

  4. Edwards BK, Ward E, Kohler BA, Eheman C, Zauber AG, Anderson RN, et al. Annual report to the nation on the status of cancer, 1975–2006, featuring colorectal cancer trends and impact of interventions (risk factors, screening, and treatment) to reduce future rates. Cancer. 2010;116(3):544–73. https://doi.org/10.1002/cncr.24760.

    Article  PubMed  Google Scholar 

  5. Bondeven P, Hagemann-Madsen RH, Laurberg S, Pedersen BG. Extent and completeness of mesorectal excision evaluated by postoperative magnetic resonance imaging. Br J Surg. 2013;100(10):1357–67. https://doi.org/10.1002/bjs.9225.

    Article  CAS  PubMed  Google Scholar 

  6. Siegel R, Desantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64(2):104–17. https://doi.org/10.3322/caac.21220.

    Article  PubMed  Google Scholar 

  7. Yen SK, Padmanabhan P, Selvan ST. Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics. 2013;3(12):986–1003. https://doi.org/10.7150/thno.4827.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW. 2022. https://doi.org/10.1002/VIW.20200027.

    Article  PubMed  Google Scholar 

  9. Guo W, Chen Z, Tan L, Gu D, Ren X, Fu C, et al. Emerging biocompatible nanoplatforms for the potential application in diagnosis and therapy of deep tumors. VIEW. 2022. https://doi.org/10.1002/VIW.20200174.

    Article  Google Scholar 

  10. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1–2):271–84. https://doi.org/10.1016/s0168-3659(99)00248-5.

    Article  CAS  PubMed  Google Scholar 

  11. Ni JS, Li Y, Yue W, Liu B, Li K. Nanoparticle-based cell trackers for biomedical applications. Theranostics. 2020;10(4):1923–47. https://doi.org/10.7150/thno.39915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sun M, Xu L, Ma W, Wu X, Kuang H, Wang L, et al. Hierarchical plasmonic nanorods and upconversion core-satellite nanoassemblies for multimodal imaging-guided combination phototherapy. Adv Mater. 2016;28(5):898–904. https://doi.org/10.1002/adma.201505023.

    Article  CAS  PubMed  Google Scholar 

  13. Caracciolo G, Farokhzad OC, Mahmoudi M. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 2017;35(3):257–64. https://doi.org/10.1016/j.tibtech.2016.08.011.

    Article  CAS  PubMed  Google Scholar 

  14. Li J, Rao J, Pu K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials. 2018;155:217–35. https://doi.org/10.1016/j.biomaterials.2017.11.025.

    Article  CAS  PubMed  Google Scholar 

  15. Ma W, Gehret PM, Hoff RE, Kelly LP, Suh WH. The investigation into the toxic potential of iron oxide nanoparticles utilizing rat pheochromocytoma and human neural stem cells. Nanomaterials (Basel). 2019. https://doi.org/10.3390/nano9030453.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jing H, Wang J, Yang P, Ke X, Xia G, Chen B. Magnetic Fe(3)O(4) nanoparticles and chemotherapy agents interact synergistically to induce apoptosis in lymphoma cells. Int J Nanomed. 2010;5:999–1004. https://doi.org/10.2147/IJN.S14957.

    Article  CAS  Google Scholar 

  17. Zhao S, Yu X, Qian Y, Chen W, Shen J. Multifunctional magnetic iron oxide nanoparticles: an advanced platform for cancer theranostics. Theranostics. 2020;10(14):6278–309. https://doi.org/10.7150/thno.42564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pellegrino T, Wilhelm C. Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano. 2016;10(2):2436–46. https://doi.org/10.1021/acsnano.5b07249.

    Article  CAS  PubMed  Google Scholar 

  19. Hauser AK, Mitov MI, Daley EF, McGarry RC, Anderson KW, Hilt JZ. Targeted iron oxide nanoparticles for the enhancement of radiation therapy. Biomaterials. 2016;105:127–35. https://doi.org/10.1016/j.biomaterials.2016.07.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hola K, Markova Z, Zoppellaro G, Tucek J, Zboril R. Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnol Adv. 2015;33(6 Pt 2):1162–76. https://doi.org/10.1016/j.biotechadv.2015.02.003.

    Article  CAS  PubMed  Google Scholar 

  21. Hachani R, Lowdell M, Birchall M, Hervault A, Mertz D, Begin-Colin S, et al. Polyol synthesis, functionalisation, and biocompatibility studies of superparamagnetic iron oxide nanoparticles as potential MRI contrast agents. Nanoscale. 2016;8(6):3278–87. https://doi.org/10.1039/c5nr03867g.

    Article  CAS  PubMed  Google Scholar 

  22. Yu EY, Bishop M, Zheng B, Ferguson RM, Khandhar AP, Kemp SJ, et al. Magnetic particle imaging: a novel in vivo imaging platform for cancer detection. Nano Lett. 2017;17(3):1648–54. https://doi.org/10.1021/acs.nanolett.6b04865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Israel LL, Galstyan A, Holler E, Ljubimova JY. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release. 2020;320:45–62. https://doi.org/10.1016/j.jconrel.2020.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Du Y, Liu X, Liang Q, Liang XJ, Tian J. Optimization and design of magnetic ferrite nanoparticles with uniform tumor distribution for highly sensitive MRI/MPI performance and improved magnetic hyperthermia therapy. Nano Lett. 2019;19(6):3618–26. https://doi.org/10.1021/acs.nanolett.9b00630.

    Article  CAS  PubMed  Google Scholar 

  25. Ni D, Bu W, Ehlerding EB, Cai W, Shi J. Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev. 2017;46(23):7438–68. https://doi.org/10.1039/c7cs00316a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao Z, Zhou Z, Bao J, Wang Z, Hu J, Chi X, et al. Octapod iron oxide nanoparticles as high-performance T(2) contrast agents for magnetic resonance imaging. Nat Commun. 2013;4:2266. https://doi.org/10.1038/ncomms3266.

    Article  CAS  PubMed  Google Scholar 

  27. Harris JC, Scully MA, Day ES. Cancer cell membrane-coated nanoparticles for cancer management. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11121836.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur J Pharm Sci. 2013;48(3):416–27. https://doi.org/10.1016/j.ejps.2012.12.006.

    Article  CAS  PubMed  Google Scholar 

  29. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl. 2014;53(46):12320–64. https://doi.org/10.1002/anie.201403036.

    Article  CAS  PubMed  Google Scholar 

  30. Rao L, Bu LL, Xu JH, Cai B, Yu GT, Yu X, et al. Red blood cell membrane as a biomimetic nanocoating for prolonged circulation time and reduced accelerated blood clearance. Small. 2015;11(46):6225–36. https://doi.org/10.1002/smll.201502388.

    Article  CAS  PubMed  Google Scholar 

  31. Richards D, Ivanisevic A. Inorganic material coatings and their effect on cytotoxicity. Chem Soc Rev. 2012;41(6):2052–60. https://doi.org/10.1039/c1cs15252a.

    Article  CAS  PubMed  Google Scholar 

  32. Jewett SA, Makowski MS, Andrews B, Manfra MJ, Ivanisevic A. Gallium nitride is biocompatible and non-toxic before and after functionalization with peptides. Acta Biomater. 2012;8(2):728–33. https://doi.org/10.1016/j.actbio.2011.09.038.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Z, Cheng L, Sun Y, Wei X, Cai B, Liao L, et al. Enhanced isolation of fetal nucleated red blood cells by enythrocyte-leukocyte hybrid membrane-coated magnetic nanoparticles for noninvasive pregnant diagnostics. Anal Chem. 2021;93(2):1033–42. https://doi.org/10.1021/acs.analchem.0c03933.

    Article  CAS  PubMed  Google Scholar 

  34. Wang S, Yin Y, Song W, Zhang Q, Yang Z, Dong Z, et al. Red-blood-cell-membrane-enveloped magnetic nanoclusters as a biomimetic theranostic nanoplatform for bimodal imaging-guided cancer photothermal therapy. J Mater Chem B. 2020;8(4):803–12. https://doi.org/10.1039/c9tb01829h.

    Article  CAS  PubMed  Google Scholar 

  35. Sanz-Ortega L, Rojas JM, Portilla Y, Perez-Yague S, Barber DF. Magnetic nanoparticles attached to the NK cell surface for tumor targeting in adoptive transfer therapies does not affect cellular effector functions. Front Immunol. 2019;10:2073. https://doi.org/10.3389/fimmu.2019.02073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sanz-Ortega L, Rojas JM, Marcos A, Portilla Y, Stein JV, Barber DF. T cells loaded with magnetic nanoparticles are retained in peripheral lymph nodes by the application of a magnetic field. J Nanobiotechnol. 2019;17(1):14. https://doi.org/10.1186/s12951-019-0440-z.

    Article  Google Scholar 

  37. Jiang Q, Wang K, Zhang X, Ouyang B, Liu H, Pang Z, et al. Platelet membrane-camouflaged magnetic nanoparticles for ferroptosis-enhanced cancer immunotherapy. Small. 2020;16(22):e2001704. https://doi.org/10.1002/smll.202001704.

    Article  CAS  PubMed  Google Scholar 

  38. Tang C, Wang C, Zhang Y, Xue L, Li Y, Ju C, et al. Recognition, intervention, and monitoring of neutrophils in acute ischemic stroke. Nano Lett. 2019;19(7):4470–7. https://doi.org/10.1021/acs.nanolett.9b01282.

    Article  CAS  PubMed  Google Scholar 

  39. Marzano M, Bou-Dargham MJ, Cone AS, York S, Helsper S, Grant SC, et al. Biogenesis of extracellular vesicles produced from human-stem-cell-derived cortical spheroids exposed to iron oxides. Acs Biomater Sci Eng. 2021;7(3):1111–22. https://doi.org/10.1021/acsbiomaterials.0c01286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang X, Chen J, Jiang Q, Ding X, Li Y, Chen C, et al. Highly biosafe biomimetic stem cell membrane-disguised nanovehicles for cartilage regeneration. J Mater Chem B. 2020;8(38):8884–93. https://doi.org/10.1039/d0tb01686a.

    Article  CAS  PubMed  Google Scholar 

  41. Meng X, Wang J, Zhou J, Tian Q, Qie B, Zhou G, et al. Tumor cell membrane-based peptide delivery system targeting the tumor microenvironment for cancer immunotherapy and diagnosis. Acta Biomater. 2021;127:266–75. https://doi.org/10.1016/j.actbio.2021.03.056.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Xia M, Zhou Z, Hu X, Wang J, Zhang M, et al. p53 promoted ferroptosis in ovarian cancer cells treated with human serum incubated-superparamagnetic iron oxides. Int J Nanomed. 2021;16:283–96. https://doi.org/10.2147/IJN.S282489.

    Article  Google Scholar 

  43. Lungu II, Nistorescu S, Badea MA, Petre AM, Udrea AM, Banici AM, et al. Doxorubicin-conjugated iron oxide nanoparticles synthesized by laser pyrolysis: in vitro study on human breast cancer cells. Polymers (Basel). 2020. https://doi.org/10.3390/polym12122799.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rao L, Yu GT, Meng QF, Bu LL, Tian R, Lin LS, et al. Cancer cell membrane-coated nanoparticles for personalized therapy in patient-derived xenograft models. Adv Funct Mater. 2019;29(51):1905671. https://doi.org/10.1002/adfm.201905671.

    Article  CAS  Google Scholar 

  45. Li S, Feng X, Wang J, Xu W, Islam MA, Sun T, et al. Multiantigenic nanoformulations activate anticancer immunity depending on size. Adv Funct Mater. 2019;29(49):1903391. https://doi.org/10.1002/adfm.201903391.

    Article  CAS  Google Scholar 

  46. Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X. Emerging strategies of cancer therapy based on ferroptosis. Adv Mater. 2018;30(12):e1704007. https://doi.org/10.1002/adma.201704007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2(9):577–83. https://doi.org/10.1038/nnano.2007.260.

    Article  CAS  PubMed  Google Scholar 

  48. Gao L, Fan K, Yan X. Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics. 2017;7(13):3207–27. https://doi.org/10.7150/thno.19738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 2012;6(4):3080–91. https://doi.org/10.1021/nn2048137.

    Article  CAS  PubMed  Google Scholar 

  50. Lartigue L, Innocenti C, Kalaivani T, Awwad A, Sanchez DMM, Guari Y, et al. Water-dispersible sugar-coated iron oxide nanoparticles. An evaluation of their relaxometric and magnetic hyperthermia properties. J Am Chem Soc. 2011;133(27):10459–72. https://doi.org/10.1021/ja111448t.

    Article  CAS  PubMed  Google Scholar 

  51. Yang G, Gong H, Liu T, Sun X, Cheng L, Liu Z. Two-dimensional magnetic WS2@Fe3O4 nanocomposite with mesoporous silica coating for drug delivery and imaging-guided therapy of cancer. Biomaterials. 2015;60:62–71. https://doi.org/10.1016/j.biomaterials.2015.04.053.

    Article  CAS  PubMed  Google Scholar 

  52. Feng L, Yang D, He F, Gai S, Li C, Dai Y, et al. A core-shell-satellite structured Fe(3)O(4)@g-C(3)N(4)-UCNPs-PEG for T(1)/T(2)-weighted dual-modal MRI-guided photodynamic therapy. Adv Healthc Mater. 2017. https://doi.org/10.1002/adhm.201700502.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Shen J, Xu R, Mai J, Kim HC, Guo X, Qin G, et al. High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics. ACS Nano. 2013;7(11):9867–80. https://doi.org/10.1021/nn4035316.

    Article  CAS  PubMed  Google Scholar 

  54. Shen J, Wolfram J, Ferrari M, Shen H. Taking the vehicle out of drug delivery. Mater Today (Kidlington). 2017;20(3):95–7. https://doi.org/10.1016/j.mattod.2017.01.013.

    Article  PubMed  Google Scholar 

  55. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450(7171):893–8. https://doi.org/10.1038/nature06358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Green ED, Guyer MS. Charting a course for genomic medicine from base pairs to bedside. Nature. 2011;470(7333):204–13. https://doi.org/10.1038/nature09764.

    Article  CAS  PubMed  Google Scholar 

  57. Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature. 2009;458(7239):719–24. https://doi.org/10.1038/nature07943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer. 2010;102(11):1555–77. https://doi.org/10.1038/sj.bjc.6605642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Li C, Deng C, Pan G, Wang X, Zhang K, Dong Z, et al. Lycorine hydrochloride inhibits cell proliferation and induces apoptosis through promoting FBXW7-MCL1 axis in gastric cancer. J Exp Clin Cancer Res. 2020;39(1):230. https://doi.org/10.1186/s13046-020-01743-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang W, Yang J, Chen Y, Xue R, Mao Z, Lu W, et al. Lycorine hydrochloride suppresses stress-induced premature cellular senescence by stabilizing the genome of human cells. Aging Cell. 2021;20(2):e13307. https://doi.org/10.1111/acel.13307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhu JY, Zheng DW, Zhang MK, Yu WY, Qiu WX, Hu JJ, et al. Preferential cancer cell self-recognition and tumor self-targeting by coating nanoparticles with homotypic cancer cell membranes. Nano Lett. 2016;16(9):5895–901. https://doi.org/10.1021/acs.nanolett.6b02786.

    Article  CAS  PubMed  Google Scholar 

  62. Huang X, Lin C, Luo C, Guo Y, Li J, Wang Y, et al. Fe(3)O(4)@M nanoparticles for MRI-targeted detection in the early lesions of atherosclerosis. Nanomedicine UK. 2021;33:102348. https://doi.org/10.1016/j.nano.2020.102348.

    Article  CAS  Google Scholar 

  63. Shi D, Cho HS, Chen Y, Xu H, Gu H, Lian J, et al. Fluorescent polystyrene-Fe3O4 composite nanospheres for in vivo imaging and hyperthermia. Adv Mater. 2009;21(21):2170–3. https://doi.org/10.1002/adma.200803159.

    Article  CAS  Google Scholar 

  64. Hu CM, Fang RH, Wang KC, Luk BT, Thamphiwatana S, Dehaini D, et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015;526(7571):118–21. https://doi.org/10.1038/nature15373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhai Y, Su J, Ran W, Zhang P, Yin Q, Zhang Z, et al. Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy. Theranostics. 2017;7(10):2575–92. https://doi.org/10.7150/thno.20118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zomorodian K, Veisi H, Mousavi SM, Ataabadi MS, Yazdanpanah S, Bagheri J, et al. Modified magnetic nanoparticles by PEG-400-immobilized Ag nanoparticles (Fe(3)O(4)@PEG-Ag) as a core/shell nanocomposite and evaluation of its antimicrobial activity. Int J Nanomed. 2018;13:3965–73. https://doi.org/10.2147/IJN.S161002.

    Article  CAS  Google Scholar 

  67. Yuan H, Zhang W, Du YZ, Hu FQ. Ternary nanoparticles of anionic lipid nanoparticles/protamine/DNA for gene delivery. Int J Pharm. 2010;392(1–2):224–31. https://doi.org/10.1016/j.ijpharm.2010.03.025.

    Article  CAS  PubMed  Google Scholar 

  68. Abraham JP, Magee D, Cremolini C, Antoniotti C, Halbert DD, Xiu J, et al. Clinical validation of a machine-learning-derived signature predictive of outcomes from first-line oxaliplatin-based chemotherapy in advanced colorectal cancer. Clin Cancer Res. 2021;27(4):1174–83. https://doi.org/10.1158/1078-0432.CCR-20-3286.

    Article  CAS  PubMed  Google Scholar 

  69. Rawla P, Sunkara T, Barsouk A. Epidemiology of colorectal cancer: incidence, mortality, survival, and risk factors. Prz Gastroenterol. 2019;14(2):89–103. https://doi.org/10.5114/pg.2018.81072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Simon K. Colorectal cancer development and advances in screening. Clin Interv Aging. 2016;11:967–76. https://doi.org/10.2147/CIA.S109285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alavi DH, Henriksen HB, Lauritzen PM, Kvaerner AS, Sakinis T, Langleite TM, et al. Quantification of adipose tissues by dual-energy x-ray absorptiometry and computed tomography in colorectal cancer patients. Clin Nutr ESPEN. 2021;43:360–8. https://doi.org/10.1016/j.clnesp.2021.03.022.

    Article  PubMed  Google Scholar 

  72. Wong C, Fu Y, Li M, Mu S, Chu X, Fu J, et al. MRI-based artificial intelligence in rectal cancer. J Magn Reson Imaging. 2023;57(1):45–56. https://doi.org/10.1002/jmri.28381.

    Article  PubMed  Google Scholar 

  73. Shinji S, Yamada T, Matsuda A, Sonoda H, Ohta R, Iwai T, et al. Recent advances in the treatment of colorectal cancer: a review. J Nippon Med Sch. 2022;89(3):246–54. https://doi.org/10.1272/jnms.JNMS.2022_89-310.

    Article  CAS  PubMed  Google Scholar 

  74. Tepus M, Yau TO. Non-invasive colorectal cancer screening: an overview. Gastrointest Tumors. 2020;7(3):62–73. https://doi.org/10.1159/000507701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knuchel R, Kiessling F, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302–25. https://doi.org/10.1016/j.addr.2019.01.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yin X, Yang J, Zhang M, Wang X, Xu W, Price CH, et al. Serum metabolic fingerprints on bowl-shaped submicroreactor chip for chemotherapy monitoring. ACS Nano. 2022;16(2):2852–65. https://doi.org/10.1021/acsnano.1c09864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Barick KC, Singh S, Bahadur D, Lawande MA, Patkar DP, Hassan PA. Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia. J Colloid Interface Sci. 2014;418:120–5. https://doi.org/10.1016/j.jcis.2013.11.076.

    Article  CAS  PubMed  Google Scholar 

  78. Xie X, Zhang X, Chen J, Tang X, Wang M, Zhang L, et al. Fe3O4-solamargine induces apoptosis and inhibits metastasis of pancreatic cancer cells. Int J Oncol. 2019;54(3):905–15. https://doi.org/10.3892/ijo.2018.4637.

    Article  CAS  PubMed  Google Scholar 

  79. O’Connor JP, Rose CJ, Jackson A, Watson Y, Cheung S, Maders F, et al. DCE-MRI biomarkers of tumour heterogeneity predict CRC liver metastasis shrinkage following bevacizumab and FOLFOX-6. Br J Cancer. 2011;105(1):139–45. https://doi.org/10.1038/bjc.2011.191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li Y, Xin J, Sun Y, Han T, Zhang H, An F. Magnetic resonance imaging-guided and targeted theranostics of colorectal cancer. Cancer Biol Med. 2020;17(2):307–27. https://doi.org/10.20892/j.issn.2095-3941.2020.0072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by the Natural Science Foundation of China (Nos: 81772285, 81802106); Jinjiang High-Level Talent Strait plan ([2017] No. 14); Quanzhou Introduction of High-Level Talent Team project (2018CT009); Shanghai Health and Family Planning Commission Project (202240009); and Independent original basic research projects of Tongji University (22120220646).

Author information

Authors and Affiliations

Authors

Contributions

BC and TW incepted and designed the research and methods. JL and CL synthesized the nanoparticles. JL and TW carried out the in vitro cytotoxicity and in vivo biosafety evaluation. JL and YZ carried out the in vivo chemotherapy effect experiments. JL and CL carried out the in vivo Magnetic Resonance Imaging experiments. JL and YZ analyzed the data. JL wrote the final paper. BC, CS, and TW contributed to resources, writing, reviewing, & editing of the manuscript, and funding acquisition. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Tiegong Wang or Bingdi Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics Committee of the Laboratory Animal Center, School of Medicine, Tongji University. Ethics Number (TJAA07223101).

Informed consent

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1658 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lin, C., Zhu, Y. et al. Colorectal cancer cell membrane biomimetic ferroferric oxide nanomaterials for homologous bio-imaging and chemotherapy application. Med Oncol 40, 322 (2023). https://doi.org/10.1007/s12032-023-02175-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02175-7

Keywords

Navigation