Skip to main content

Advertisement

Log in

Effect of insulin on IR and GLP1-R expressions in HT22 cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Insulin is a significant growth factor that specifically binds to the insulin receptor (IR) in the brain and then activates the PI3K-AKT pathway. Glucagon-like peptide 1 (GLP-1) has a variety of functions including neuroprotection, support for neurogenesis, and increasing insulin signal. This study aims to investigate the effect of insulin administered to immortalized clonal mouse hippocampal cell line (HT22) at different doses and intervals on IR, insulin receptor A (IRA), insulin receptor B (IRB), and Glucagon-like peptide 1 receptor (GLP1-R) mRNA expression and protein levels. The cells were planted in 6 well plates at a density of 3 × 105/4 × 105. Cells treated with insulin at different concentrations (5, 10, and 40 nM) were collected at 0.5, 2, 8, 16, and 24 h. RT-PCR and western blot analysis were used to measure mRNA expression and protein levels. Our results showed that insulin has short and long-term effects on IR and GLP1-R expression depending on dose and time. These findings may guide future studies targeting IR isoforms and GLP1-R in particular, as well as determining the optimal dose and duration of insulin stimulation in insulin signaling research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

No data associated in the manuscript.

Abbreviations

IR:

Insulin receptor

GLP-1:

Glucagon-like peptide 1

HT22:

Mouse hippocampal cell line

GLP1-R:

Glucagon-like peptide 1 receptor

IRA:

Insulin receptor A

IRB:

Insulin receptor B

RT-qPCR:

Real-time quantitative PCR

PBS:

Phosphate-buffered saline

RIPA:

Radioimmunoprecipitation assay buffer

PVDF:

Polyvinylidene difluoride

PBST:

PBS-Tween

MALAT1:

Metastatic-related pulmonary adenocarcinoma transcript 1

SRSF2:

Reducing factor cool-arginine-rich fusion factor 2

PAK2:

P21-activated kinases

PTZ:

Pentylentetrazole

References

  1. Posner BI. Insulin signalling: the inside story. Can J Diabetes. 2017;41:108–13.

    Article  PubMed  Google Scholar 

  2. Ullrich A, Bell JR, Chen EY, Herrera R, Petruzzelli LM, et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature. 1985;313:756–61.

    Article  CAS  PubMed  Google Scholar 

  3. Frasca F, Pandini G, Scalia P, Sciacca L, Mineo R, et al. Insulin receptor isoform A, a newly recognized, high-affinity insulin-like growth factor II receptor in fetal and cancer cells. Mol Cell Biol. 1999;19:3278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev. 2009;30:586–623.

    Article  CAS  PubMed  Google Scholar 

  5. Kleinridders A, Ferris HA, Cai W, Kahn CR. Insulin action in the brain regulates systemic metabolism and brain function. Diabetes. 2014;63:2232–43.

    Article  PubMed  PubMed Central  Google Scholar 

  6. van der Heide LP, Ramakers GMJ, Smidt MP. Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol. 2006;79:205–21.

    Article  PubMed  Google Scholar 

  7. Heni M, Kullmann S, Preissl H, Fritsche A, Haring HU. Impaired insülin action in the human brain: causes and metabolic consequences. Nat Rev Endocrinol. 2015;11:701–11.

    Article  CAS  PubMed  Google Scholar 

  8. Biessels GJ, Reagan LP. Hippocampal insulin resistance and cognitive dysfunction. Nat Rev Neurosci. 2015;16:660–71.

    Article  CAS  PubMed  Google Scholar 

  9. Messier C, Teutenberg K. The role of insulin, insulin growth factor, and insulin-degrading enzyme in brain aging and Alzheimer’s disease. Neural Plast. 2005;12:311–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Campbell JE, Drucker DJ. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab. 2013;17:819–37.

    Article  CAS  PubMed  Google Scholar 

  11. Madsbad S, Kielgast U, Asmar M, Deacon CF, Torekov SS, et al. An overview of once-weekly glucagon-like peptide-1 receptor agonists–available efficacy and safety data and perspectives for the future. Diabetes Obes Metab. 2011;13:394–407.

    Article  CAS  PubMed  Google Scholar 

  12. Long-Smith CM, Manning S, McClean PL, Coakley MF, O’Halloran DJ, et al. The diabetes drug liraglutide ameliorates aberrant insulin receptor localization and signaling in parallel with decreasing both amyloid-beta plaque and glial pathology in a mouse model of Alzheimer’s disease. Neuromol Med. 2013;15:102–14.

    Article  CAS  Google Scholar 

  13. Zhou M, Chen S, Peng P, Gu Z, Yu J, et al. Dulaglutide ameliorates STZ-induced AD-like impairment of learning and memory ability by modulating hyperphosphorylation of tau and NFs through GSK3beta. Biochem Biophys Res Commun. 2019;511:154–60.

    Article  CAS  PubMed  Google Scholar 

  14. Yang Y, Ma D, Xu W, Chen F, Du T, et al. Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level. Mol Cell Neurosci. 2016;70:68–75.

    Article  CAS  PubMed  Google Scholar 

  15. Khan M, Rutten BPF, Kim MO. MST1 regulates neuronal cell death via JNK/Casp3 signaling pathway in HFD mouse brain and HT22 cells. Int J Mol Sci. 2019;20:2504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Varshney P, Dey CS. P21-activated kinase 2 (PAK2) regulates glucose uptake and insülin sensitivity in neuronal cells. Mole Cell Endocrinol. 2016;429:50–61.

    Article  CAS  Google Scholar 

  17. Li Y, Xiang Q, Yao YH, Liu JJ, Wang Y, et al. Inactivated AMPK- α2 promotes the progression of diabetic brain damage by Cdk5 phosphorylation at Thr485 site. Biochimie. 2020;168:277–84.

    Article  CAS  PubMed  Google Scholar 

  18. Moruzzi N, Lazerri-Barcelo F, Valladolid-Acebes I, Moede T, Paschen M, et al. Tissue-specific expression of insulin receptor isoforms in obesity/type 2 diabetes mouse models. J Cell Mol Med. 2021;25:4800–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu L, Zhou J, Pan Y, Lv J, Liu Y, et al. Glucagon-like peptide-1 receptor expression and its functions are regulated by androgen. Biomed Pharmacother. 2019;120: 109555.

    Article  CAS  PubMed  Google Scholar 

  20. Aoyama E, Watari I, Podyma-Inoue KA, Yanagishita M, Ono T. Expression of glucagon-like peptide-1 receptor and glucose-dependent insulinotropic polypeptide receptor is regulated by the glucose concentration in mouse osteoblastic MC3T3-E1 cells. Int J Mol Med. 2014;34:475–82.

    Article  CAS  PubMed  Google Scholar 

  21. Apostolatos A, Song S, Acosta S, Peart M, Watson JE, et al. Insulin promotes neuronal survival via the alternatively spliced protein kinase CδII isoform. J Biol Chem. 2012;287:9299–310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bassit GE, Patel RS, Carter G, Shibu V, Patel AA, et al. MALAT1 in human adipose stem cells modulates survival and alternative splicing of PKCδII in HT22 cells. Endocrinology. 2017;158:183–95.

    PubMed  Google Scholar 

  23. Bagaméry F, Varga K, Kecsmár K, Vincze I, Szöko E, et al. Lack of insulin resistance in response to streptozotocin treatment in neuronal SH-SY5Y cell line. J Neural Transm. 2020;127:71–80.

    Article  PubMed  Google Scholar 

  24. Frazier HN, Ghoweri AO, Anderson KL, Lin RL, Popa GJ, et al. Elevating insulin signaling using a constitutively active insulin receptor increases glucose metabolism and expression of GLUT3 in hippocampal neurons. Front Neurosci. 2020;14:668.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Koshal P, Kumar P. Neurochemical modulation involved in the beneficial effect of liraglutide, GLP-1 agonist on PTZ kindling epilepsy-induced comorbidities in mice. Mol Cell Biochem. 2016;415:77–87.

    Article  CAS  PubMed  Google Scholar 

  26. Wen Y, Wu K, Xie Y, Dan W, Zhan Y, et al. Inhibitory effects of glucagon-like peptide-1 receptor on epilepsy. Biochem Biophys Res Commun. 2019;511:79–86.

    Article  CAS  PubMed  Google Scholar 

  27. Hussein AM, Eldosoky M, El-Shafey M, El-Mesery M, Abbas KM, et al. Effects of GLP-1 receptor activation on a pentylenetetrazole-kindling rat model. Brain Sci. 2019;9:108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Greenbaum D, Colangelo C, Williams K, Gerstein M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 2003;4:117.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165:535–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study is supported by funding from the Pamukkale University (Project number 2022HZDP013).

Author information

Authors and Affiliations

Authors

Contributions

MTA, ZMA, AA and VK: Conceptualization, MTA, ZMA and VK: Data curation, ZMA and VK: Formal analysis, VK and AA: Funding acquisition, MTA, ZMA, AA and VK: Investigation, ZMA and AA: Methodology, VK: Supervision, MTA: Validation, ZMA: Visualization, MTA, ZMA and VK: Writing—original draft, MTA and VK: Reviewing. All authors have read and agree to the published version of the manuscript.

Corresponding author

Correspondence to Melek Tunc-Ata.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tunc-Ata, M., Altunay, Z.M., Alphan, A. et al. Effect of insulin on IR and GLP1-R expressions in HT22 cells. Med Oncol 40, 301 (2023). https://doi.org/10.1007/s12032-023-02172-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02172-w

Keywords

Navigation