Skip to main content

Advertisement

Log in

Artichoke as a melanoma growth inhibitor

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Melanoma is the most lethal malignancy in skin cancers. About 97,610 new cases of melanoma are projected to occur in the United States (US) in 2023. Artichoke is a very popular plant widely consumed in the US due to its nutrition. In recent years, it has been shown that artichoke shows powerful anti-cancer effects on cancers such as breast cancer, colon cancer, liver cancer, and leukemia. However, there is little known about its effect on melanoma. This study was designed to investigate if artichoke extract (AE) has any direct effect on the growth of melanoma. Clonogenic survival assay, cell proliferation, and caspase-3 activity kits were used to evaluate the effects AE has on cell survival, proliferation, and apoptosis of the widely studied melanoma cell line HTB-72. We further investigated the possible molecular mechanisms using RT-PCR and immunohistochemical staining. The percentage of colonies of HTB-72 melanoma cells decreased significantly after treated with AE. This was paralleled with the decrease in the optic density (OD) value of cancer cells after treatment with AE. This was further supported by the decreased expression of PCNA mRNA after treated with AE. Furthermore, the cellular caspase-3 activity increased after treated with AE. The anti-proliferative effect of AE on melanoma cells correlated with increased p21, p27, and decreased CDK4. The pro-apoptotic effect of AE on melanoma cells correlated with decreased survivin. Artichoke inhibits growth of melanoma by inhibition of proliferation and promotion of apoptosis. Such a study might be helpful to develop a new promising treatment for melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48. https://doi.org/10.3322/caac.21763.

    Article  PubMed  Google Scholar 

  2. American Cancer Society. Melanoma skin cancer statistics. American Cancer Society. https://www.cancer.org/cancer/melanoma-skin-cancer/about/key-statistics.html. Accessed 31 Dec 2022.

  3. American Cancer Society. Melanoma skin cancer risk factors: melanoma risk factors. American Cancer Society. https://www.cancer.org/cancer/melanoma-skin-cancer/causes-risks-prevention/risk-factors.html. Accessed 31 Dec 2022.

  4. American Cancer Society. Preventing melanoma: can melanoma be prevented? American Cancer Society. https://www.cancer.org/cancer/melanoma-skin-cancer/causes-risks-prevention/prevention.html. Accessed 31 Dec 2022.

  5. Singh M, Alavi A, Wong R, Akita S. Radiodermatitis: a review of our current understanding. Am J Clin Dermatol. 2016;17(3):277–92. https://doi.org/10.1007/s40257-016-0186-4.

    Article  PubMed  Google Scholar 

  6. Salekzamani S, Ebrahimi-Mameghani M, Rezazadeh K. The antioxidant activity of artichoke (Cynara scolymus): a systematic review and meta-analysis of animal studies. Phytother Res. 2019;33(1):55–71. https://doi.org/10.1002/ptr.6213.

    Article  CAS  PubMed  Google Scholar 

  7. Ben Salem M, Affes H, Ksouda K, Dhouibi R, Sahnoun Z, Hammami S, Zeghal KM. Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum Nutr. 2015;70(4):441–53. https://doi.org/10.1007/s11130-015-0503-8.

    Article  PubMed  Google Scholar 

  8. Santos HO, Bueno AA, Mota JF. The effect of artichoke on lipid profile: a review of possible mechanisms of action. Pharmacol Res. 2018;2018(137):170–8. https://doi.org/10.1016/j.phrs.2018.10.007 (Epub 9 Oct 2018).

    Article  CAS  Google Scholar 

  9. Fang Y, DeMarco VG, Nicholl MB. Resveratrol enhances radiation sensitivity in prostate cancer by inhibiting cell proliferation and promoting cell senescence and apoptosis. Cancer Sci. 2012;103(6):1090–8. https://doi.org/10.1111/j.1349-7006.2012.02272.x. (Epub 15 April 2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bhardwaj A, Sethi G. Vadhan-Raj S et al Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-ҝB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood. 2007;109:2293–302.

    Article  CAS  PubMed  Google Scholar 

  11. Su JL, Lin MT. Hong CC et al Resveratrol induces FasL-related apoptosis through Cdc42 activation of ASK/JNK-dependent signaling pathway in human leukemia HL-60 cells. Carcinogenesis. 2005;26:1–10.

    Article  CAS  PubMed  Google Scholar 

  12. Diaz R, Nguewa PA. Diaz-Gonzalez JA et al The novel Akt inhibitor Palomid 529 (P529) enhances the effect of radiotherapy in prostate cancer. Br J Cancer. 2009;100:932–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnson DG, Walker CL. Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol. 1999;39:295–312. https://doi.org/10.1146/annurev.pharmtox.39.1.295.

    Article  CAS  PubMed  Google Scholar 

  14. Coqueret O. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol. 2003;13(2):65–70. https://doi.org/10.1016/s0962-8924(02)00043-0.

    Article  CAS  PubMed  Google Scholar 

  15. Wheatley SP, Altieri DC. Survivin at a glance. J Cell Sci. 2019;132(7):jcs223826. https://doi.org/10.1242/jcs.223826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Abbastabar M, Kheyrollah M, Azizian K, Bagherlou N, Tehrani SS, Maniati M, Karimian A. Multiple functions of p27 in cell cycle, apoptosis, epigenetic modification and transcriptional regulation for the control of cell growth: a double-edged sword protein. DNA Repair (Amst). 2018;2018(69):63–72. https://doi.org/10.1016/j.dnarep.2018.07.008. (Epub 20 July 2018).

    Article  CAS  Google Scholar 

  17. Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst). 2016;2016(42):63–71. https://doi.org/10.1016/j.dnarep.2016.04.008. (Epub 22 April 2016).

    Article  CAS  Google Scholar 

  18. Shamloo B, Usluer S. p21 in cancer research. Cancers (Basel). 2019;11(8):1178. https://doi.org/10.3390/cancers11081178.

    Article  CAS  PubMed  Google Scholar 

  19. Donnellan R, Chetty R. Cyclin E in human cancers. FASEB J. 1999;13(8):773–80. https://doi.org/10.1096/fasebj.13.8.773.

    Article  CAS  PubMed  Google Scholar 

  20. Sherr CJ, Roberts JM. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 2004;18(22):2699–711. https://doi.org/10.1101/gad.1256504.

    Article  CAS  PubMed  Google Scholar 

  21. Kollmann K, Briand C, Bellutti F, Schicher N, Blunder S, Zojer M, Hoeller C. The interplay of CDK4 and CDK6 in melanoma. Oncotarget. 2019;10(14):1346–59. https://doi.org/10.18632/oncotarget.26515.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Baker SJ, Poulikakos PI, Irie HY, Parekh S, Reddy EP. CDK4: a master regulator of the cell cycle and its role in cancer. Genes Cancer. 2022;13:21–45. https://doi.org/10.18632/genesandcancer.221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hussussian CJ, Struewing JP, Goldstein AM, et al. Germline p16 mutations in familial melanoma. Nat Genet. 1994;8(1):15–21. https://doi.org/10.1038/ng0994-15.

    Article  CAS  PubMed  Google Scholar 

  24. Kamb A, Shattuck-Eidens D, Eeles R, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet. 1994;8(1):23–6. https://doi.org/10.1038/ng0994-22.

    Article  CAS  PubMed  Google Scholar 

  25. Sharpless E, Chin L. The INK4a/ARF locus and melanoma. Oncogene. 2003;22(20):3092–8. https://doi.org/10.1038/sj.onc.1206461.

    Article  CAS  PubMed  Google Scholar 

  26. Read J, Wadt KAW, Hayward NK. Melanoma genetics. J Med Genet. 2016;53(1):1–14. https://doi.org/10.1136/jmedgenet-2015-103150.

    Article  CAS  PubMed  Google Scholar 

  27. Bartkova J, Lukas J, Guldberg P, et al. The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis. Cancer Res. 1996;56(23):5475–83.

    CAS  PubMed  Google Scholar 

  28. Jaiswal PK, Goel A, Mittal RD. Survivin: a molecular biomarker in cancer. Indian J Med Res. 2015;141(4):389–97. https://doi.org/10.4103/0971-5916.159250.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kou L, Zhu Z, Redington C, Bai Q, Wakefield M, Lequio M, Fang Y. Potential use of kiwifruit extract for treatment of melanoma. Med Oncol. 2021;38(3):25. https://doi.org/10.1007/s12032-021-01465-2.

    Article  CAS  PubMed  Google Scholar 

  30. Fang Y, Bradley MJ, Cook KM, Herrick EJ, Nicholl MB. A potential role for resveratrol as a radiation sensitizer for melanoma treatment. J Surg Res. 2013;183(2):645–53. doi: https://doi.org/10.1016/j.jss.2013.02.037 (Epub 14 March 2013).

    Article  CAS  PubMed  Google Scholar 

  31. Fang Y, Moore BJ, Bai Q, Cook KM, Herrick EJ, Nicholl MB. Hydrogen peroxide enhances radiation-induced apoptosis and inhibition of melanoma cell proliferation. Anticancer Res. 2013;33(5):1799–807.

    CAS  PubMed  Google Scholar 

  32. Ahmed B, Qadir MI, Ghafoor S. Malignant melanoma: skin cancer-diagnosis, prevention, and treatment. Crit Rev Eukaryot Gene Expr. 2020;30(4):291–7. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2020028454.

    Article  PubMed  Google Scholar 

  33. Shi W. Radiation therapy for melanoma. In: Ward WH, Farma JM, editors. Cutaneous melanoma: etiology and therapy. Codon Publications; 2017. http://www.ncbi.nlm.nih.gov/books/NBK481863/. Accessed 4 July 2020.

  34. McKean MA, Amaria RN. Multidisciplinary treatment strategies in high-risk resectable melanoma: role of adjuvant and neoadjuvant therapy. Cancer Treat Rev. 2018;70:144–53. https://doi.org/10.1016/j.ctrv.2018.08.01.

    Article  CAS  PubMed  Google Scholar 

  35. Kim MM, Parmar H, Cao Y, et al. Whole brain radiotherapy and RRx-001: two partial responses in radioresistant melanoma brain metastases from a Phase I/II clinical trial. Transl Oncol. 2016;9(2):108–13. https://doi.org/10.1016/j.tranon.2015.12.003.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Grants from Des Moines University for Yujiang Fang (IOER 112-3749).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujiang Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, A.M., Deng, Z., Nelson, C.J. et al. Artichoke as a melanoma growth inhibitor. Med Oncol 40, 262 (2023). https://doi.org/10.1007/s12032-023-02077-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02077-8

Keywords

Navigation