Skip to main content
Log in

Current perspectives on Vaxinia virus: an immuno-oncolytic vector in cancer therapy

  • Perspectives in Oncology
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Viruses are being researched as cutting-edge therapeutic agents in cancer due to their selective oncolytic action against malignancies. Immuno-oncolytic viruses are a potential category of anticancer treatments because they have natural features that allow viruses to efficiently infect, replicate, and destroy cancer cells. Oncolytic viruses may be genetically modified; engineers can use them as a platform to develop additional therapy modalities that overcome the limitations of current treatment approaches. In recent years, researchers have made great strides in the understanding relationship between cancer and the immune system. An increasing corpus of research is functioning on the immunomodulatory functions of oncolytic virus (OVs). Several clinical studies are currently underway to determine the efficacy of these immuno-oncolytic viruses. These studies are exploring the design of these platforms to elicit the desired immune response and to supplement the available immunotherapeutic modalities to render immune-resistant malignancies amenable to treatment. This review will discuss current research and clinical developments on Vaxinia immuno-oncolytic virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

This submission does not require any availability of data and materials as this is a review paper.

References

  1. Cancer in 2022—CPR22. (n.d.). Cancer Progress Report., https://cancerprogressreport.aacr.org/progress/cpr22-contents/cpr22-cancer-in-2022/. Accessed 30 April 2023

  2. Cancer. (n.d.)., https://www.who.int/news-room/fact-sheets/detail/cancer. Accessed 23 Aug 2022

  3. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–89. https://doi.org/10.1002/ijc.33588.

    Article  CAS  Google Scholar 

  4. Lauer UM, Beil J. Oncolytic viruses: challenges and considerations in an evolving clinical landscape. Future Oncol. 2022;18(24):2713–32. https://doi.org/10.2217/fon-2022-0440.

    Article  CAS  Google Scholar 

  5. Kayode AA, Eya IE, Kayode OT. A short review on cancer therapeutics. Phys Sci Rev. 2022. https://doi.org/10.1515/psr-2021-0169.

    Article  Google Scholar 

  6. Nenclares P, Harrington KJ. The biology of cancer. Medicine. 2020;48(2):67–72. https://doi.org/10.1016/j.mpmed.2019.11.001.

    Article  Google Scholar 

  7. Cattley RC, Radinsky BR. Cancer therapeutics: understanding the mechanism of action. Toxicol Pathol. 2004;32(1_suppl):116–21. https://doi.org/10.1080/01926230490426507.

    Article  CAS  PubMed  Google Scholar 

  8. Vesely MD, Schreiber RD. Cancer immunoediting: Antigens, mechanisms, and implications to cancer immunotherapy: tumor antigens and cancer immunoediting. Ann N Y Acad Sci. 2013;1284(1):1–5. https://doi.org/10.1111/nyas.12105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gubin MM, Vesely MD. Cancer immunoediting in the era of immuno-oncology. Clin Cancer Res. 2022. https://doi.org/10.1158/1078-0432.CCR-21-1804.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wilczyński JR, Nowak M. Cancer Immunoediting Elimination, Equilibrium, and Immune Escape in Solid Tumors. In: Klink M, Szulc-Kielbik I, editors. Interaction of Immune and Cancer Cells, vol. 113. Cham: Springer International Publishing; 2022. p. 1–57. https://doi.org/10.1007/978-3-030-91311-3_1.

    Chapter  Google Scholar 

  11. Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal. 2020;18(1):59. https://doi.org/10.1186/s12964-020-0530-4.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Atsou K, Khou S, Anjuère F, Braud VM, Goudon T. Analysis of the equilibrium phase in immune-controlled tumors provides hints for designing better strategies for cancer treatment. Front Oncol. 2022;12:878827. https://doi.org/10.3389/fonc.2022.878827.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: From immunosurveillance to tumor escape. Nat Immunol. 2002;3(11):991–8. https://doi.org/10.1038/ni1102-991.

    Article  CAS  PubMed  Google Scholar 

  14. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48. https://doi.org/10.1016/j.immuni.2004.07.017.

    Article  CAS  PubMed  Google Scholar 

  15. Whiteside T. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Semin Cancer Biol. 2006;16(1):3–15. https://doi.org/10.1016/j.semcancer.2005.07.008.

    Article  CAS  PubMed  Google Scholar 

  16. Printezi MI, Kilgallen AB, Bond MJG, Štibler U, Putker M, Teske AJ, Cramer MJ, Punt CJA, Sluijter JPG, Huitema ADR, May AM, van Laake LW. Toxicity and efficacy of chronomodulated chemotherapy: a systematic review. Lancet Oncol. 2022;23(3):e129–43. https://doi.org/10.1016/S1470-2045(21)00639-2.

    Article  CAS  PubMed  Google Scholar 

  17. Alfarouk KO, Stock C-M, Taylor S, Walsh M, Muddathir AK, Verduzco D, Bashir AHH, Mohammed OY, Elhassan GO, Harguindey S, Reshkin SJ, Ibrahim ME, Rauch C. Resistance to cancer chemotherapy: failure in drug response from ADME to P-gp. Cancer Cell Int. 2015;15(1):71. https://doi.org/10.1186/s12935-015-0221-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Garmaroudi GA, Karimi F, Naeini LG, Kokabian P, Givtaj N. Therapeutic Efficacy of oncolytic viruses in fighting cancer: recent advances and perspective. Oxid Med Cell Longev. 2022;2022:1–14. https://doi.org/10.1155/2022/3142306.

    Article  CAS  Google Scholar 

  19. Bommareddy PK, Shettigar M, Kaufman HL. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol. 2018;18(8):498–513. https://doi.org/10.1038/s41577-018-0014-6.

    Article  CAS  PubMed  Google Scholar 

  20. de Graaf JF, de Vor L, Fouchier RAM, van den Hoogen BG. Armed oncolytic viruses: a kick-start for anti-tumor immunity. Cytokine Growth Factor Rev. 2018;41:28–39. https://doi.org/10.1016/j.cytogfr.2018.03.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yuan Y, Zhang J, Kessler J, Rand J, Modi B, Chaurasiya S, Murga M, Tang A, Martinez N, Meisen H, Yamauchi D, Yost SE, Chong LMO, Seiz A, Nixon B, Ede N, Waisman JR, Stewart DB, Mortimer JE, Fong Y. Phase I study of intratumoral administration of CF33-HNIS-antiPDL1 in patients with metastatic triple negative breast cancer. J Clin Oncol. 2022;40(16_suppl):e13070–e13070. https://doi.org/10.1200/JCO.2022.40.16_suppl.e13070.

    Article  Google Scholar 

  22. Imugene (ASX: IMU). (n.d.). https://www.imugene.com/. Accessed 23 Aug 2022

  23. Greseth MD, Traktman P. The life cycle of the vaccinia virus genome. Ann Rev Virol. 2022. https://doi.org/10.1146/annurev-virology-091919-104752.

    Article  Google Scholar 

  24. Zhang Z, Dong L, Zhao C, Zheng P, Zhang X, Xu J. Vaccinia virus-based vector against infectious diseases and tumors. Hum Vaccin Immunother. 2021;17(6):1578–85. https://doi.org/10.1080/21645515.2020.1840887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mackett M, Smith GL, Moss B. Vaccinia virus: a selectable eukaryotic cloning and expression vector. Proc Natl Acad Sci. 1982;79(23):7415–9. https://doi.org/10.1073/pnas.79.23.7415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Woo Y, Zhang Z, Yang A, Chaurasiya S, Park AK, Lu J, Kim S-I, Warner SG, Von Hoff D, Fong Y. Novel chimeric immuno-oncolytic virus CF33-hNIS-antiPDL1 for the treatment of pancreatic cancer. J Am Coll Surg. 2020;230(4):709–17. https://doi.org/10.1016/j.jamcollsurg.2019.12.027.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mojic M, Takeda K, Hayakawa Y. The dark side of IFN-γ: its role in promoting cancer immunoevasion. Int J Mol Sci. 2017;19(1):89. https://doi.org/10.3390/ijms19010089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schirrmacher V. Molecular Mechanisms of anti-neoplastic and immune stimulatory properties of oncolytic newcastle disease virus. Biomedicines. 2022;10(3):562. https://doi.org/10.3390/biomedicines10030562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Esfahani K, Roudaia L, Buhlaiga N, Del Rincon SV, Papneja N, Miller WH. A Review of cancer immunotherapy: from the past, to the present, to the future. Curr Oncol. 2020;27(12):87–97. https://doi.org/10.3747/co.27.5223.

    Article  Google Scholar 

  30. Davola ME, Mossman KL. Oncolytic viruses: how “lytic” must they be for therapeutic efficacy. OncoImmunology. 2019;8(6):e1581528. https://doi.org/10.1080/2162402X.2019.1596006.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rojas-Domínguez A, Arroyo-Duarte R, Rincón-Vieyra F, Alvarado-Mentado M. Modeling cancer immunoediting in tumor microenvironment with system characterization through the ising-model Hamiltonian. BMC Bioinform. 2022;23(1):200. https://doi.org/10.1186/s12859-022-04731-w.

    Article  CAS  Google Scholar 

  32. Nirmal AJ, Maliga Z, Vallius T, Quattrochi B, Chen AA, Jacobson CA, Pelletier RJ, Yapp C, Arias-Camison R, Chen Y-A, Lian CG, Murphy GF, Santagata S, Sorger PK. The Spatial landscape of progression and immunoediting in primary melanoma at single-cell resolution. Cancer Discov. 2022;12(6):1518–41. https://doi.org/10.1158/2159-8290.CD-21-1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Christie JD, Chiocca EA. Treat and repeat: oncolytic virus therapy for brain cancer. Nat Med. 2022;28(8):1540–2. https://doi.org/10.1038/s41591-022-01901-4.

    Article  CAS  PubMed  Google Scholar 

  34. Chen L, Zhou C, Chen Q, Shang J, Liu Z, Guo Y, Li C, Wang H, Ye Q, Li X, Zu S, Li F, Xia Q, Zhou T, Li A, Wang C, Chen Y, Wu A, Qin C, Man J. Oncolytic Zika virus promotes intratumoral T cell infiltration and improves immunotherapy efficacy in glioblastoma. Mol Ther—Oncolytics. 2022;24:522–34. https://doi.org/10.1016/j.omto.2022.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer. 2014;14(8):559–67. https://doi.org/10.1038/nrc3770.

    Article  CAS  PubMed  Google Scholar 

  36. Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther. 2008;8(10):1581–8. https://doi.org/10.1586/14737140.8.10.1581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tang C, Li L, Mo T, Na J, Qian Z, Fan D, Sun X, Yao M, Pan L, Huang Y, Zhong L. Oncolytic viral vectors in the era of diversified cancer therapy: from preclinical to clinical. Clin Transl Oncol. 2022;24(9):1682–701. https://doi.org/10.1007/s12094-022-02830-x.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Cejalvo JM, Falato C, Villanueva L, Tolosa P, González X, Pascal M, Canes J, Gavilá J, Manso L, Pascual T, Prat A, Salvador F. Oncolytic viruses: a new immunotherapeutic approach for breast cancer treatment. Cancer Treat Rev. 2022;106:102392. https://doi.org/10.1016/j.ctrv.2022.102392.

    Article  CAS  PubMed  Google Scholar 

  39. Haseley A, Alvarez-Breckenridge C, Chaudhury A, Kaur B. Advances in oncolytic virus therapy for glioma. Recent Pat CNS Drug Discov. 2009;4(1):1–13. https://doi.org/10.2174/157488909787002573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hemminki O, dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol. 2020;13(1):84. https://doi.org/10.1186/s13045-020-00922-1.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Garg AD, Dudek-Peric AM, Romano E, Agostinis P. Immunogenic cell death. Int J Dev Biol. 2015;59(1-2–3):131–40. https://doi.org/10.1387/ijdb.150061pa.

    Article  CAS  PubMed  Google Scholar 

  42. Schmidt SV, Nino-Castro AC, Schultze JL. Regulatory dendritic cells: there is more than just immune activation. Front Immunol. 2012. https://doi.org/10.3389/fimmu.2012.00274.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Couzin-Frankel J. Cancer immunotherapy. Science. 2013;342(6165):1432–3. https://doi.org/10.1126/science.342.6165.1432.

    Article  CAS  PubMed  Google Scholar 

  44. Mostafa A, Meyers D, Thirukkumaran C, Liu P, Gratton K, Spurrell J, Shi Q, Thakur S, Morris D. Oncolytic reovirus and immune checkpoint inhibition as a novel immunotherapeutic strategy for breast cancer. Cancers. 2018;10(6):205. https://doi.org/10.3390/cancers10060205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gholami S, Marano A, Chen NG, Aguilar RJ, Frentzen A, Chen C-H, Lou E, Fujisawa S, Eveno C, Belin L, Zanzonico P, Szalay A, Fong Y. A novel vaccinia virus with dual oncolytic and anti-angiogenic therapeutic effects against triple-negative breast cancer. Breast Cancer Res Treat. 2014;148(3):489–99. https://doi.org/10.1007/s10549-014-3180-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mardi A, Shirokova AV, Mohammed RN, Keshavarz A, Zekiy AO, Thangavelu L, Mohamad TAM, Marofi F, Shomali N, Zamani A, Akbari M. Biological causes of immunogenic cancer cell death (ICD) and anti-tumor therapy; combination of oncolytic virus-based immunotherapy and CAR T-cell therapy for ICD induction. Cancer Cell Int. 2022;22(1):168. https://doi.org/10.1186/s12935-022-02585-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nutter Howard FH, Iscaro A, Muthana M (2022) Oncolytic viral particle delivery. In Systemic Drug Delivery Strategies (pp. 211–230). Elsevier, https://doi.org/10.1016/B978-0-323-85781-9.00008-7

  48. Burgess HM, Pourchet A, Hajdu CH, Chiriboga L, Frey AB, Mohr I. Targeting Poxvirus decapping enzymes and mRNA decay to generate an effective oncolytic virus. Mol Ther—Oncolytics. 2018;8:71–81. https://doi.org/10.1016/j.omto.2018.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gal-Ben-Ari S, Barrera I, Ehrlich M, Rosenblum K. PKR: a kinase to remember. Front Mol Neurosci. 2019;11:480. https://doi.org/10.3389/fnmol.2018.00480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ripp J, Hentzen S, Saeed A. Oncolytic viruses as an adjunct to immune checkpoint inhibition. Front Biosci-Landmark. 2022;27(5):151. https://doi.org/10.31083/j.fbl2705151.

    Article  CAS  Google Scholar 

  51. Li D, Wu M. Pattern recognition receptors in health and diseases. Signal Transduct Target Ther. 2021;6(1):291. https://doi.org/10.1038/s41392-021-00687-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sitta J, Claudio PP, Howard CM. Virus-Based Immuno-Oncology Models. Biomedicines. 2022;10(6):1441. https://doi.org/10.3390/biomedicines10061441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahrends T, Borst J. The opposing roles of CD4+ T cells in anti-tumour immunity. Immunology. 2018;154(4):582–92. https://doi.org/10.1111/imm.12941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marchini A, Daeffler L, Pozdeev VI, Angelova A, Rommelaere J. Immune Conversion of tumor microenvironment by oncolytic viruses: the protoparvovirus H-1PV case study. Front Immunol. 2019;10:1848. https://doi.org/10.3389/fimmu.2019.01848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kielbik M, Szulc-Kielbik I, Klink M. Calreticulin—multifunctional chaperone in immunogenic cell death: potential significance as a prognostic biomarker in ovarian cancer patients. Cells. 2021;10(1):130. https://doi.org/10.3390/cells10010130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Das K, Belnoue E, Rossi M, Hofer T, Danklmaier S, Nolden T, Schreiber L-M, Angerer K, Kimpel J, Hoegler S, Spiesschaert B, Kenner L, von Laer D, Elbers K, Derouazi M, Wollmann G. A modular self-adjuvanting cancer vaccine combined with an oncolytic vaccine induces potent antitumor immunity. Nat Commun. 2021;12(1):5195. https://doi.org/10.1038/s41467-021-25506-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lemos de Matos A, Franco LS, McFadden G. Oncolytic viruses and the immune system: the dynamic duo. Mol Ther—Methods Clin Dev. 2020;17:349–58. https://doi.org/10.1016/j.omtm.2020.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. O’Leary MP, Warner SG, Kim S-I, Chaurasiya S, Lu J, Choi AH, Park AK, Woo Y, Fong Y, Chen NG. A novel oncolytic chimeric orthopoxvirus encoding luciferase enables real-time view of colorectal cancer cell infection. Mol Ther—Oncolytics. 2018;9:13–21. https://doi.org/10.1016/j.omto.2018.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Warner SG, Kim S-I, Chaurasiya S, O’Leary MP, Lu J, Sivanandam V, Woo Y, Chen NG, Fong Y. A novel chimeric poxvirus encoding hnis is tumor-tropic, imageable, and synergistic with radioiodine to sustain colon cancer regression. Mol Ther—Oncolytics. 2019;13:82–92. https://doi.org/10.1016/j.omto.2019.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim S-I, Park AK, Chaurasiya S, Kang S, Lu J, Yang A, Sivanandam V, Zhang Z, Woo Y, Priceman SJ, Fong Y, Warner SG. Recombinant orthopoxvirus primes colon cancer for checkpoint inhibitor and cross-primes T cells for antitumor and antiviral immunity. Mol Cancer Ther. 2021;20(1):173–82. https://doi.org/10.1158/1535-7163.MCT-20-0405.

    Article  CAS  PubMed  Google Scholar 

  61. O’Leary MP, Choi AH, Kim S-I, Chaurasiya S, Lu J, Park AK, Woo Y, Warner SG, Fong Y, Chen NG. Novel oncolytic chimeric orthopoxvirus causes regression of pancreatic cancer xenografts and exhibits abscopal effect at a single low dose. J Transl Med. 2018;16(1):110. https://doi.org/10.1186/s12967-018-1483-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhang Z, Yang A, Chaurasiya S, Park AK, Lu J, Kim S-I, Warner SG, Yuan Y-C, Liu Z, Han H, Von Hoff D, Fong Y, Woo Y. CF33-hNIS-antiPDL1 virus primes pancreatic ductal adenocarcinoma for enhanced anti-PD-L1 therapy. Cancer Gene Ther. 2021. https://doi.org/10.1038/s41417-021-00350-4.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chaurasiya S, Yang A, Kang S, Lu J, Kim S-I, Park AK, Sivanandam V, Zhang Z, Woo Y, Warner SG, Fong Y. Oncolytic poxvirus CF33-hNIS-ΔF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. OncoImmunology. 2020;9(1):1729300. https://doi.org/10.1080/2162402X.2020.1729300.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang Z, Yang A, Chaurasiya S, Park AK, Kim S-I, Lu J, Olafsen T, Warner SG, Fong Y, Woo Y. PET imaging and treatment of pancreatic cancer peritoneal carcinomatosis after subcutaneous intratumoral administration of a novel oncolytic virus, CF33-hNIS-antiPDL1. Mol Ther—Oncolytics. 2022;24:331–9. https://doi.org/10.1016/j.omto.2021.12.022.

    Article  CAS  PubMed  Google Scholar 

  65. CF33-hNIS-antiPDL1 for the Treatment of Metastatic Triple Negative Breast Cancer—Full Text View—ClinicalTrials.gov. (n.d.) https://clinicaltrials.gov/ct2/show/NCT05081492.

  66. A Study of CF33-hNIS (VAXINIA), an Oncolytic Virus, as Monotherapy or in Combination with Pembrolizumab in Adults with Metastatic or Advanced Solid Tumors ClinicalTrials.gov. (n.d.). https://clinicaltrials.gov/ct2/show/NCT05346484. Acccessed 23 Aug 2022,

Download references

Acknowledgements

The authors are grateful to Shoolini University for providing junior research scholarship to Simran Deep Kaur and also to all the researchers who discovered Vaxinia virus and immuno-oncolytic drug delivery system that was helpful for framing this review paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the study’s conception and initiation. The paper’s outline and structure were designed by SDK. All the figures and tables in the original draft were made by SDK. DNK and ADS read and commented on earlier versions of the paper. The manuscript is edited by SDK and DNK. The manuscript was edited under DNK’s direction. The final version, which was the result of multiple rounds of editing, was approved by all of the authors.

Corresponding author

Correspondence to Deepak N. Kapoor.

Ethics declarations

Conflict of interest

Simran Deep Kaur, Deepak N Kapoor, Aman Deep Singh declare that they have no conflict of interest.

Ethical approval and consent to participations

Not applicable.

Consent for publications

We agreed with the journal policy and provided our consent for the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, S.D., Singh, A.D. & Kapoor, D.N. Current perspectives on Vaxinia virus: an immuno-oncolytic vector in cancer therapy. Med Oncol 40, 205 (2023). https://doi.org/10.1007/s12032-023-02068-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02068-9

Keywords

Navigation