Skip to main content

Advertisement

Log in

JMJD5 inhibits lung cancer progression by regulating glucose metabolism through the p53/TIGAR pathway

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Metabolic reprogramming is considered one of the main driving forces for tumor progression, providing energy and substrates of biosynthesis to support rapid neoplastic proliferation. Particularly, the tumor suppressor protein p53 was shown to revert the Warburg effect and play complex roles in regulating glucose metabolism. Jumonji C domain-containing protein 5 (JMJD5) has previously been reported as a negative regulator of p53. However, the role of JMJD5 in p53-mediated metabolic reprogramming remains elusive. Here, we discovered that knockdown of JMJD5 significantly enhances TIGAR expression in p53 wild-type non-small cell lung cancer (NSCLC) cells, which could further suppress glycolysis and promote the pentose phosphate pathway. Besides, JMJD5 knockdown promotes the NSCLC cell proliferation in vitro and xenograft tumor growth in vivo, while silencing TIGAR can abolish this effect. Low JMJD5 expression levels are associated with elevated TIGAR levels and correlates with poor prognosis in lung cancer patients. Taken together, our findings suggest that JMJD5 is a key regulator of tumor glucose metabolism by targeting the p53/TIGAR metabolic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. https://doi.org/10.1158/2159-8290.CD-21-1059.

    Article  CAS  PubMed  Google Scholar 

  2. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14. https://doi.org/10.1126/science.123.3191.309.

    Article  CAS  PubMed  Google Scholar 

  3. Gomes AS, et al. p53 and glucose metabolism: an orchestra to be directed in cancer therapy. Pharmacol Res. 2018;131:75–86. https://doi.org/10.1016/j.phrs.2018.03.015.

    Article  CAS  PubMed  Google Scholar 

  4. Patra KC, Hay N. The pentose phosphate pathway and cancer. Trends Biochem Sci. 2014;39(8):347–54. https://doi.org/10.1016/j.tibs.2014.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020;38(2):167–97. https://doi.org/10.1016/j.ccell.2020.06.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell. 2009;137(3):413–31. https://doi.org/10.1016/j.cell.2009.04.037.

    Article  CAS  PubMed  Google Scholar 

  7. Mello SS, Attardi LD. Deciphering p53 signaling in tumor suppression. Curr Opin Cell Biol. 2018;51:65–72. https://doi.org/10.1016/j.ceb.2017.11.005.

    Article  CAS  PubMed  Google Scholar 

  8. Liu J, et al. Tumor suppressor p53 and metabolism. J Mol Cell Biol. 2019;11(4):284–92. https://doi.org/10.1093/jmcb/mjy070.

    Article  CAS  PubMed  Google Scholar 

  9. Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol. 2022;85:4–32. https://doi.org/10.1016/j.semcancer.2021.03.010.

    Article  CAS  PubMed  Google Scholar 

  10. Oh S, Janknecht R. Histone demethylase JMJD5 is essential for embryonic development. Biochem Biophys Res Commun. 2012;420(1):61–5. https://doi.org/10.1016/j.bbrc.2012.02.115.

    Article  CAS  PubMed  Google Scholar 

  11. Ishimura A, et al. Jmjd5, an H3K36me2 histone demethylase, modulates embryonic cell proliferation through the regulation of Cdkn1a expression. Development. 2012;139(4):749–59. https://doi.org/10.1242/dev.074138.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu H, Hu S, Baker J. JMJD5 regulates cell cycle and pluripotency in human embryonic stem cells. Stem Cells. 2014;32(8):2098–110. https://doi.org/10.1002/stem.1724.

    Article  CAS  PubMed  Google Scholar 

  13. Youn MY, et al. JMJD5, a Jumonji C (JmjC) domain-containing protein, negatively regulates osteoclastogenesis by facilitating NFATc1 protein degradation. J Biol Chem. 2012;287(16):12994–3004. https://doi.org/10.1074/jbc.M111.323105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jones MA, et al. Jumonji domain protein JMJD5 functions in both the plant and human circadian systems. Proc Natl Acad Sci U S A. 2010;107(50):21623–8. https://doi.org/10.1073/pnas.1014204108.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saran AR, et al. JMJD5 links CRY1 function and proteasomal degradation. PLoS Biol. 2018;16(11):e2006145. https://doi.org/10.1371/journal.pbio.2006145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao Z, et al. Overexpression of histone demethylase JMJD5 promotes metastasis and indicates a poor prognosis in breast cancer. Int J Clin Exp Pathol. 2015;8(9):10325–34.

    PubMed  PubMed Central  Google Scholar 

  17. Wang HJ, et al. JMJD5 regulates PKM2 nuclear translocation and reprograms HIF-1alpha-mediated glucose metabolism. Proc Natl Acad Sci U S A. 2014;111(1):279–84. https://doi.org/10.1073/pnas.1311249111.

    Article  CAS  PubMed  Google Scholar 

  18. Wang HJ, et al. KDM8/JMJD5 as a dual coactivator of AR and PKM2 integrates AR/EZH2 network and tumor metabolism in CRPC. Oncogene. 2019;38(1):17–32. https://doi.org/10.1038/s41388-018-0414-x.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang R, et al. JMJD5 is a potential oncogene for colon carcinogenesis. Int J Clin Exp Pathol. 2015;8(6):6482–9.

    PubMed  PubMed Central  Google Scholar 

  20. Yao Y, Zhou WY, He RX. Down-regulation of JMJD5 suppresses metastasis and induces apoptosis in oral squamous cell carcinoma by regulating p53/NF-kappaB pathway. Biomed Pharmacother. 2019;109:1994–2004. https://doi.org/10.1016/j.biopha.2018.07.144.

    Article  CAS  PubMed  Google Scholar 

  21. Song J, et al. A novel protein encoded by ZCRB1-induced circHEATR5B suppresses aerobic glycolysis of GBM through phosphorylation of JMJD5. J Exp Clin Cancer Res. 2022;41(1):171. https://doi.org/10.1186/s13046-022-02374-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Qu LH, et al. Comprehensive analyses of prognostic biomarkers and immune infiltrates among histone lysine demethylases (KDMs) in hepatocellular carcinoma. Cancer Immunol Immunother. 2022;71(10):2449–67. https://doi.org/10.1007/s00262-022-03167-8.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Z, et al. Differential proteome profiling of pleural effusions from lung cancer and benign inflammatory disease patients. Biochim Biophys Acta. 2012;1824(4):692–700. https://doi.org/10.1016/j.bbapap.2012.01.016.

    Article  CAS  PubMed  Google Scholar 

  24. Oh S, Shin S, Janknecht R. The small members of the JMJD protein family: enzymatic jewels or jinxes? Biochim Biophys Acta Rev Cancer. 2019;1871(2):406–18. https://doi.org/10.1016/j.bbcan.2019.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang H, et al. Jumonji-C domain-containing protein 5 suppresses proliferation and aerobic glycolysis in pancreatic cancer cells in a c-Myc-dependent manner. Cell Signal. 2022;93:110282. https://doi.org/10.1016/j.cellsig.2022.110282.

    Article  CAS  PubMed  Google Scholar 

  26. Huang X, et al. JMJD5 interacts with p53 and negatively regulates p53 function in control of cell cycle and proliferation. Biochim Biophys Acta. 2015;1853(10 pt A):2286–95. https://doi.org/10.1016/j.bbamcr.2015.05.026.

    Article  CAS  PubMed  Google Scholar 

  27. Bensaad K, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006;126(1):107–20. https://doi.org/10.1016/j.cell.2006.05.036.

    Article  CAS  PubMed  Google Scholar 

  28. Green DR, Chipuk JE. p53 and metabolism: inside the TIGAR. Cell. 2006;126(1):30–2. https://doi.org/10.1016/j.cell.2006.06.032.

    Article  CAS  PubMed  Google Scholar 

  29. Tang J, et al. Structure, regulation, and biological functions of TIGAR and its role in diseases. Acta Pharmacol Sin. 2021;42(10):1547–55. https://doi.org/10.1038/s41401-020-00588-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu H, et al. Clipping of arginine-methylated histone tails by JMJD5 and JMJD7. Proc Natl Acad Sci U S A. 2017;114(37):E7717–26. https://doi.org/10.1073/pnas.1706831114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shen J, et al. JMJD5 cleaves monomethylated histone H3 N-tail under DNA damaging stress. EMBO Rep. 2017;18(12):2131–43. https://doi.org/10.15252/embr.201743892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wilkins SE, et al. JMJD5 is a human arginyl C-3 hydroxylase. Nat Commun. 2018;9(1):1180. https://doi.org/10.1038/s41467-018-03410-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berkers CR, et al. Metabolic regulation by p53 family members. Cell Metab. 2013;18(5):617–33. https://doi.org/10.1016/j.cmet.2013.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maddocks OD, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells. Nature. 2013;493(7433):542–6. https://doi.org/10.1038/nature11743.

    Article  CAS  PubMed  Google Scholar 

  35. Cheung EC, Ludwig RL, Vousden KH. Mitochondrial localization of TIGAR under hypoxia stimulates HK2 and lowers ROS and cell death. Proc Natl Acad Sci U S A. 2012;109(50):20491–6. https://doi.org/10.1073/pnas.1206530109.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Geng J, et al. The diverse role of TIGAR in cellular homeostasis and cancer. Free Radic Res. 2018;52(11–12):1240–9. https://doi.org/10.1080/10715762.2018.1489133.

    Article  CAS  PubMed  Google Scholar 

  37. Li M, et al. A TIGAR-regulated metabolic pathway is critical for protection of brain ischemia. J Neurosci. 2014;34(22):7458–71. https://doi.org/10.1523/JNEUROSCI.4655-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang J, et al. Reprogramming metabolism by histone methyltransferase NSD2 drives endocrine resistance via coordinated activation of pentose phosphate pathway enzymes. Cancer Lett. 2016;378(2):69–79. https://doi.org/10.1016/j.canlet.2016.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Xie JM, et al. TIGAR has a dual role in cancer cell survival through regulating apoptosis and autophagy. Cancer Res. 2014;74(18):5127–38. https://doi.org/10.1158/0008-5472.CAN-13-3517.

    Article  CAS  PubMed  Google Scholar 

  40. Siegel RL, et al. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. https://doi.org/10.3322/caac.21708.

    Article  PubMed  Google Scholar 

  41. Donehower LA, et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome Atlas. Cell Rep. 2019;28(5):1370-84 e5. https://doi.org/10.1016/j.celrep.2019.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LY20H160040 and LY18H160024) and the National Natural Science Foundation of China (81772919).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to this study. SJ, QH, LG: experimental design, material preparation, data collection and analysis; SJ, LG: writing the first draft of the manuscript; SJ: funding acquisition. All authors commented on previous versions, and read and approved the final manuscript.

Corresponding author

Correspondence to Jing Shen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Qi, H. & Shen, J. JMJD5 inhibits lung cancer progression by regulating glucose metabolism through the p53/TIGAR pathway. Med Oncol 40, 145 (2023). https://doi.org/10.1007/s12032-023-02016-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02016-7

Keywords

Navigation