Skip to main content
Log in

DDB1 regulates the activation-induced apoptosis of T cells via downregulating the expression of histone methyltransferase SETD7

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The damaged DNA-binding protein 1 (DDB1) enhances the survival and maintenance of multipotent cells through promoting the Cullin 4 E3 ligase complex-dependent ubiquitination and subsequent degradation of downstream substrates. Naive T cells could be activated and differentiated into effector and memory T cells by exogenous stimulatory molecules, which are essential in immune response and inflammation. However, possible regulation and molecular mechanisms of DDB1 in T-cell activation-induced apoptosis were largely unknown. Here, in this study, we uncovered that DDB1 could downregulate the expression of histone methyltransferase SETD7 through decreasing its mRNA level and then regulated activation-induced apoptosis of T-cell line Jurkat cells. Furthermore, RNA-sequencing assay on activated Jurkat cells confirmed that the SETD7 attenuated the activation of Jurkat cells. Our study revealed the non-enzymatic functions of DDB1 on the activation-induced apoptosis of T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Iovine B, Iannella ML, Bevilacqua MA. Damage-specific DNA binding protein 1 (DDB1): a protein with a wide range of functions. Int J Biochem Cell Biol. 2011;43(12):1664–7. https://doi.org/10.1016/j.biocel.2011.09.001.

    Article  CAS  PubMed  Google Scholar 

  2. Sarikas A, Hartmann T, Pan ZQ. The cullin protein family. Genome Biol. 2011;12(4):220. https://doi.org/10.1186/gb-2011-12-4-220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kapetanaki MG, Guerrero-Santoro J, Bisi DC, Hsieh CL, Rapic-Otrin V, Levine AS. The DDB1-CUL4ADDB2 ubiquitin ligase is deficient in xeroderma pigmentosum group E and targets histone H2A at UV-damaged DNA sites. Proc Natl Acad Sci USA. 2006;103(8):2588–93. https://doi.org/10.1073/pnas.0511160103.

    Article  CAS  PubMed  Google Scholar 

  4. Bevilacqua MA, Iovine B, Zambrano N, D’Ambrosio C, Scaloni A, Russo T, et al. Fibromodulin gene transcription is induced by ultraviolet irradiation, and its regulation is impaired in senescent human fibroblasts. J Biol Chem. 2005;280(36):31809–17. https://doi.org/10.1074/jbc.M414677200.

    Article  CAS  PubMed  Google Scholar 

  5. Wang X, Wang HY, Hu GS, Tang WS, Weng L, Zhang Y, et al. DDB1 binds histone reader BRWD3 to activate the transcriptional cascade in adipogenesis and promote onset of obesity. Cell Rep. 2021;35(12):109281. https://doi.org/10.1016/j.celrep.2021.109281.

    Article  CAS  PubMed  Google Scholar 

  6. Wittschieben BO, Wood RD. DDB complexities. DNA Repair (Amst). 2003;2(9):1065–9. https://doi.org/10.1016/s1568-7864(03)00113-7.

    Article  CAS  PubMed  Google Scholar 

  7. Ding WY, Huang J, Wang H. Waking up quiescent neural stem cells: molecular mechanisms and implications in neurodevelopmental disorders. PLoS Genet. 2020;16(4):e1008653. https://doi.org/10.1371/journal.pgen.1008653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fu L, Cui CP, Zhang L. Regulation of stem cells by cullin-RING ligase. In: Sun Y, Wei W, Jin J, editors. Cullin-RING ligases and protein neddylation: biology and therapeutics. Singapore: Springer; 2020. p. 79–98.

    Chapter  Google Scholar 

  9. Cang Y, Zhang J, Nicholas SA, Bastien J, Li B, Zhou P, et al. Deletion of DDB1 in mouse brain and lens leads to p53-dependent elimination of proliferating cells. Cell. 2006;127(5):929–40. https://doi.org/10.1016/j.cell.2006.09.045.

    Article  CAS  PubMed  Google Scholar 

  10. Gao J, Buckley SM, Cimmino L, Guillamot M, Strikoudis A, Cang Y, et al. The CUL4-DDB1 ubiquitin ligase complex controls adult and embryonic stem cell differentiation and homeostasis. elife. 2015;4:e07539. https://doi.org/10.7554/eLife.07539.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhao L, Liao H, Wang X, Chen YG. DDB1 maintains intestinal homeostasis by preventing cell cycle arrest. Cell Regen. 2022;11(1):18. https://doi.org/10.1186/s13619-022-00119-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pepper M, Jenkins MK. Origins of CD4(+) effector and central memory T cells. Nat Immunol. 2011;12(6):467–71. https://doi.org/10.1038/ni.2038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou L, Duan J. The NMDAR GluN1-1a C-terminus binds to CaM and regulates synaptic function. Biochem Biophys Res Commun. 2021;534:323–9. https://doi.org/10.1016/j.bbrc.2020.11.085.

    Article  CAS  PubMed  Google Scholar 

  14. Hao Z, Liu L, Tao Z, Wang R, Ren H, Sun H, et al. Motor dysfunction and neurodegeneration in a C9orf72 mouse line expressing poly-PR. Nat Commun. 2019;10(1):2906. https://doi.org/10.1038/s41467-019-10956-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005;6(11):838–49. https://doi.org/10.1038/nrm1761.

    Article  CAS  PubMed  Google Scholar 

  16. Bannister AJ, Kouzarides T. Reversing histone methylation. Nature. 2005;436(7054):1103–6. https://doi.org/10.1038/nature04048.

    Article  CAS  PubMed  Google Scholar 

  17. Kaur M, Khan MM, Kar A, Sharma A, Saxena S. CRL4-DDB1-VPRBP ubiquitin ligase mediates the stress triggered proteolysis of Mcm10. Nucleic Acids Res. 2012;40(15):7332–46. https://doi.org/10.1093/nar/gks366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pan Z-Q, Kentsis A, Dias DC, Yamoah K, Wu K. Nedd8 on cullin: building an expressway to protein destruction. Oncogene. 2004;23(11):1985–97. https://doi.org/10.1038/sj.onc.1207414.

    Article  CAS  PubMed  Google Scholar 

  19. Nawrocki ST, Griffin P, Kelly KR, Carew JS. MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy. Expert Opin Investig Drugs. 2012;21(10):1563–73. https://doi.org/10.1517/13543784.2012.707192.

    Article  CAS  PubMed  Google Scholar 

  20. Yang L, Chen W, Li L, Xiao Y, Fan S, Zhang Q, et al. Ddb1 Is essential for the expansion of CD4(+) helper t cells by regulating cell cycle progression and cell death. Front Immunol. 2021;12:722273. https://doi.org/10.3389/fimmu.2021.722273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ceuppens JL, Baroja ML, Lorre K, Van Damme J, Billiau A. Human T cell activation with phytohemagglutinin. The function of IL-6 as an accessory signal. J Immunol. 1988;141(11):3868–74.

    Article  CAS  PubMed  Google Scholar 

  22. Tran HTT, Herz C, Ruf P, Stetter R, Lamy E. Human T2R38 bitter taste receptor expression in resting and activated lymphocytes. Front Immunol. 2018;9:2949. https://doi.org/10.3389/fimmu.2018.02949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hildeman DA, Mitchell T, Teague TK, Henson P, Day BJ, Kappler J, et al. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity. 1999;10(6):735–44. https://doi.org/10.1016/S1074-7613(00)80072-2.

    Article  CAS  PubMed  Google Scholar 

  24. Mehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine. 2018;101:14–8. https://doi.org/10.1016/j.cyto.2016.08.003.

    Article  CAS  PubMed  Google Scholar 

  25. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol. 2010;28:445–89. https://doi.org/10.1146/annurev-immunol-030409-101212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vallianatos CN, Iwase S. Disrupted intricacy of histone H3K4 methylation in neurodevelopmental disorders. Epigenomics. 2015;7(3):503–19. https://doi.org/10.2217/epi.15.1.

    Article  CAS  PubMed  Google Scholar 

  27. Oudhoff MJ, Antignano F, Chenery AL, Burrows K, Redpath SA, Braam MJ, et al. Intestinal epithelial cell-intrinsic deletion of Setd7 identifies role for developmental pathways in immunity to helminth infection. PLoS Pathog. 2016;12(9):e1005876. https://doi.org/10.1371/journal.ppat.1005876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zong Y, Shan H, Yin F, Ma X, Jiang C, Wang N, et al. Ddb1-Cullin4-Associated-Factor 1 in macrophages restricts the staphylococcus aureus-induced osteomyelitis. J Inflamm Res. 2021;14:1667–76. https://doi.org/10.2147/JIR.S307316.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Batista IAA, Helguero LA. Biological processes and signal transduction pathways regulated by the protein methyltransferase SETD7 and their significance in cancer. Signal Transduct Target Ther. 2018;3(1):19. https://doi.org/10.1038/s41392-018-0017-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature. 2001;410(6824):101–5. https://doi.org/10.1038/35065111.

    Article  CAS  PubMed  Google Scholar 

  31. Iovine B, Iannella ML, Bevilacqua MA. Damage-specific DNA binding protein 1 (DDB1) is involved in ubiquitin-mediated proteolysis of p27Kip1 in response to UV irradiation. Biochimie. 2011;93(5):867–75. https://doi.org/10.1016/j.biochi.2010.12.017.

    Article  CAS  PubMed  Google Scholar 

  32. Schrofelbauer B, Hakata Y, Landau NR. HIV-1 Vpr function is mediated by interaction with the damage-specific DNA-binding protein DDB1. Proc Natl Acad Sci USA. 2007;104(10):4130–5. https://doi.org/10.1073/pnas.0610167104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Angers S, Li T, Yi X, MacCoss MJ, Moon RT, Zheng N. Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature. 2006;443(7111):590–3. https://doi.org/10.1038/nature05175.

    Article  CAS  PubMed  Google Scholar 

  34. Hesterberg RS, Beatty MS, Han Y, Fernandez MR, Akuffo AA, Goodheart WE, et al. Cereblon harnesses Myc-dependent bioenergetics and activity of CD8+ T lymphocytes. Blood. 2020;136(7):857–70. https://doi.org/10.1182/blood.2019003257.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lidak T, Baloghova N, Korinek V, Sedlacek R, Balounova J, Kasparek P, et al. CRL4-DCAF12 ubiquitin ligase controls MOV10 RNA helicase during spermatogenesis and T cell activation. Int J Mol Sci. 2021;22(10):5394. https://doi.org/10.3390/ijms22105394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Bullet Edits Limited for the linguistic editing and proofreading of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (32170975), Suzhou Science and Technology Project (SKY2022115), Scientific Research Project of Wuxi Municipal Health Commission (Q202201), and the Social Development-Science & Technology Demonstration Projects of Wuxi (N20201005).

Author information

Authors and Affiliations

Authors

Contributions

RW, XW, and LZ performed the experiments. LZ and YM supervised this research. LZ and YM wrote and revised the manuscript.

Corresponding authors

Correspondence to Liang Zhou or Yong Mao.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, R., Wu, X., Zou, L. et al. DDB1 regulates the activation-induced apoptosis of T cells via downregulating the expression of histone methyltransferase SETD7. Med Oncol 40, 146 (2023). https://doi.org/10.1007/s12032-023-02015-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02015-8

Keywords

Navigation