Skip to main content

Advertisement

Log in

l-Asparaginase as the gold standard in the treatment of acute lymphoblastic leukemia: a comprehensive review

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

l-Asparaginase is an antileukemic drug long approved for clinical use to treat childhood acute lymphoblastic leukemia, the most common cancer in this population worldwide. However, the efficacy and its use as a drug have been subject to debate due to the variety of adverse effects that patients treated with it present, as well as the prompt elimination in plasma, the need for multiple administrations, and high rates of allergic reactions. For this reason, the search for new, less immunogenic variants has long been the subject of study. This review presents the main aspects of the l-asparaginase enzyme from a structural, pharmacological, and clinical point of view, from the perspective of its use in chemotherapy protocols in conjunction with other drugs in the different treatment phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Lins MM, Santos MO, de Albuquerque MFPM, de Castro CCL, Mello MJG, de Camargo B. Incidence and survival of childhood leukemia in Recife, Brazil: A population-based analysis. Pediatr Blood Cancer. 2017;64:1–6. https://doi.org/10.1002/pbc.26391.

    Article  Google Scholar 

  2. Katz AJ, Chia VM, Schoonen WM, Kelsh MA. Acute lymphoblastic leukemia: an assessment of international incidence, survival, and disease burden. Cancer Causes Control. 2015;26:1627–42. https://doi.org/10.1007/s10552-015-0657-6.

    Article  PubMed  Google Scholar 

  3. Onciu M. Acute lymphoblastic leukemia. Hematol Oncol Clin North Am. 2009;23:655–74. https://doi.org/10.1016/j.hoc.2009.04.009.

    Article  PubMed  Google Scholar 

  4. McGraw-Hill Interamericana Editores SA de C V, editor. Vademecum Academico de Medicamentos. sexta edic. Mexico: McGraw-Hill Interamericana Editores SA; 2013.

  5. Beckett A, Gervais D. What makes a good new therapeutic l-asparaginase? World J Microbiol Biotechnol. 2019;35:1–13. https://doi.org/10.1007/s11274-019-2731-9.

    Article  CAS  Google Scholar 

  6. Müller HJ, Boos J. Use of l-asparaginase in childhood ALL. Crit Rev Oncol Hematol. 1998;28:97–113. https://doi.org/10.1016/S1040-8428(98)00015-8.

    Article  PubMed  Google Scholar 

  7. Avramis VI, Tiwari PN. Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia. Int J Nanomed. 2006;1:241–54.

    CAS  Google Scholar 

  8. Batool T, Makky EA, Jalal M, Yusoff MM. A comprehensive review on l-asparaginase and its applications. Appl Biochem Biotechnol. 2016;178:900–23. https://doi.org/10.1007/s12010-015-1917-3.

    Article  CAS  PubMed  Google Scholar 

  9. Lubkowski J. Atomic resolution structure of Erwinia chrysanthemi l-asparaginase. Acta Crystallogr Sect D. 2003;59(1):84–92.

    Article  Google Scholar 

  10. Ramya LN, Doble M, Rekha VPB, Pulicherla KK. l-Asparaginase as potent anti-leukemic agent and its significance of having reduced glutaminase side activity for better treatment of acute lymphoblastic leukaemia. Appl Biochem Biotechnol. 2012;167:2144–59. https://doi.org/10.1007/s12010-012-9755-z.

    Article  CAS  PubMed  Google Scholar 

  11. Swain AL, Jaskolski M, Housset D, Rao JKM, Wlodawer A. Crystal structure of Escherichia coli l-asparaginase, an enzyme used in cancer therapy. Proc Natl Acad Sci U S A. 1993;90:1474–8. https://doi.org/10.1073/pnas.90.4.1474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lopes AM, de Oliveira-Nascimento L, Ribeiro A, Tairum CA, Breyer CA, de Oliveira MA, et al. Therapeutic l-asparaginase: upstream, downstream and beyond. Crit Rev Biotechnol. 2017;37:82–99. https://doi.org/10.3109/07388551.2015.1120705.

    Article  CAS  PubMed  Google Scholar 

  13. Labrou NE, Papageorgiou AC, Avramis VI. Structure–function relationships asparaginases and clinical applications of l-asparaginases. Curr Med Chem. 2010;17(20):2183–95.

    Article  CAS  PubMed  Google Scholar 

  14. Narta UK, Kanwar SS, Azmi W. Pharmacological and clinical evaluation of l-asparaginase in the treatment of leukemia. Crit Rev Oncol Hematol. 2007;61:208–21. https://doi.org/10.1016/j.critrevonc.2006.07.009.

    Article  PubMed  Google Scholar 

  15. Vrooman LM, Kirov II, Dreyer ZE, Kelly M, Hijiya N, Brown P, Drachtman RA, Messinger YH, Ritchey AK, Hale GA, Maloney K, Lu Y, Plourde PV, Silverman LB. Activity and toxicity of intravenous Erwinia asparaginase following allergy to E. coli-derived asparaginase in children and adolescents with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2016;63:228–33. https://doi.org/10.1002/pbc.2757.

    Article  CAS  PubMed  Google Scholar 

  16. Ogawa C, Taguchi F, Goto H, Koh K, Tomizawa D, Ohara A, et al. Plasma asparaginase activity, asparagine concentration, and toxicity after administration of Erwinia asparaginase in children and young adults with acute lymphoblastic leukemia: Phase I/II clinical trial in Japan. Pediatr Blood Cancer. 2017;64:1–8. https://doi.org/10.1002/pbc.26475.

    Article  CAS  Google Scholar 

  17. Thakur M, Lincoln L, Niyonzima FN, Sunil SM. Biotransformation isolation, purification and characterization of fungal. J Biocatal Biotransformation. 2014;2:1–9.

    Google Scholar 

  18. Peng H, Shen N, Qian L, Sun XL, Koduru P, Goodwin LO, et al. Hypermethylation of CpG islands in the mouse asparagine synthetase gene: relationship to asparaginase sensitivity in lymphoma cells. Partial methylation in normal cells. Br J Cancer. 2001;85:930–5. https://doi.org/10.1054/bjoc.2001.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shrivastava A, Khan AA, Khurshid M, Kalam MA, Jain SK, Singhal PK. Recent developments in l-asparaginase discovery and its potential as anticancer agent. Crit Rev Oncol Hematol. 2016;100:1–10. https://doi.org/10.1016/j.critrevonc.2015.01.002.

    Article  PubMed  Google Scholar 

  20. Lanvers-Kaminsky C. Asparaginase pharmacology: Challenges still to be faced. Cancer Chemother Pharmacol. 2017;79:439–50. https://doi.org/10.1007/s00280-016-3236-y.

    Article  CAS  PubMed  Google Scholar 

  21. Zeidan A, Wang ES, Wetzler M. Pegasparaginase: where do we stand? Drug Eval. 2009;91(9):111–9.

    Google Scholar 

  22. Kumar K, Kaur J, Walia S, Pathak T, Aggarwal D. L-asparaginase: an effective agent in the treatment of acute lymphoblastic leukemia. Leuk Lymphoma. 2013;55(2):256–62. https://doi.org/10.3109/10428194.2013.796047.

    Article  PubMed  Google Scholar 

  23. Costa-Silva TA, Costa IM, Biasoto HP, Lima GM, Silva C, Pessoa A, et al. Critical overview of the main features and techniques used for the evaluation of the clinical applicability of L-asparaginase as a biopharmaceutical to treat blood cancer. Blood Rev. 2020;43:100651. https://doi.org/10.1016/j.blre.2020.100651.

    Article  CAS  PubMed  Google Scholar 

  24. Atienza AL. Leucemias Leucemia linfoblástica. Pediatr Integr. 2016;6:380–9. https://doi.org/10.1017/cbo9781139107563.069.

    Article  Google Scholar 

  25. Matloub Y, Stork L, Asselin B, Hunger SP, Borowitz M, Jones T, Bostrom B, Gastier-Foster JM, Heerema NA, Carroll A, Winick N, Carroll WL, Camitta B, Gaynon PS. Outcome of children with standard-risk T-lineage acute lymphoblastic leukemia—comparison. Pediatr Blood Cancer. 2016;63:255–61. https://doi.org/10.1002/pbc.

    Article  PubMed  Google Scholar 

  26. Benedí J, Ángeles Gómez del Río M. Fármacos antineoplásicos (I). Farm Salud 2006;20:60–4.

  27. Tamayo-Chuc DU, Garza-González AG. Papel de CYP2B6 y ALDH1A1 en la resistencia farmacológica del meduloblastoma a ciclofosfamida. Gac Mex Oncol. 2015;14:46–52. https://doi.org/10.1016/j.gamo.2015.06.007.

    Article  Google Scholar 

  28. Cuca L, Muñoz D. Compuestos citotóxicos de origen vegetal y su relación con proteínas inhibidoras de apoptosis (IAP). Rev Colomb Cancerol. 2016;20:124–34.

    Article  Google Scholar 

  29. Guilleme CM, Delgado RF, Navarro JS. Actualización del tratamiento con L-asparraginasa en Pediatría. An Peditria 2013;79:329e1–11.

  30. Pieters R, Hunger SP, Boos J, Rizzari C, Silverman L, Baruchel A, et al. l-asparaginase treatment in acute lymphoblastic leukemia. Cancer. 2011;117:238–49. https://doi.org/10.1002/cncr.25489.

    Article  CAS  PubMed  Google Scholar 

  31. Ettinger AR. Pharmacology. J Pediatr Oncol 1995:46–8. https://doi.org/10.1177/104345429501200110.

  32. Völler S, Pichlmeier U, Zens A, Hempel G. Pharmacokinetics of recombinant asparaginase in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol. 2018;81:305–14. https://doi.org/10.1007/s00280-017-3492-5.

    Article  CAS  PubMed  Google Scholar 

  33. Thomas X, Le Jeune C. Erythrocyte encapsulated l -asparaginase (GRASPA) in acute leukemia. Int J Hematol Oncol. 2016;5:11–25. https://doi.org/10.2217/ijh-2016-0002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rizzari C, Conter V, Starý J, Colombini A, Moericke A, Schrappe M. Optimizing asparaginase therapy for acute lymphoblastic leukemia. Curr Opin Oncol. 2013;25:1–9. https://doi.org/10.1097/CCO.0b013e32835d7d85.

    Article  CAS  Google Scholar 

  35. Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv. 2012;9:1319–23. https://doi.org/10.1517/17425247.2012.720969.

    Article  CAS  PubMed  Google Scholar 

  36. Kurtzberg J, Asselin B, Bernstein M, Buchanan GR, Pollock BH, Camitta BM. Polyethylene glycol-conjugated l-asparaginase versus native l-asparaginase in combination with standard agents for children with acute lymphoblastic leukemia in second bone marrow relapse: a children’s Oncology Group Study (POG 8866). J Pediatr Hematol Oncol. 2011;33:610–6. https://doi.org/10.1097/MPH.0b013e31822d4d4e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Keating MJ, Holmes R, Lerner S, Ho DH. l-asparaginase and PEG asparaginase—past, present, and future. Leuk Lymphoma. 1993;10:153–7.

    Article  PubMed  Google Scholar 

  38. Vieira Pinheiro JP, Müller HJ, Schwabe D, Gunkel M, Casimiro Da Palma J, Henze G, et al. Drug monitoring of low-dose PEG-asparaginase (OncasparTM) in children with relapsed acute lymphoblastic leukaemia. Br J Haematol 2001;113:115–9. https://doi.org/10.1046/j.1365-2141.2001.02680.x.

  39. Ettinger LJ, Kurtzberg J, Voǔte PA, Jürgens H, Halpern SL. An open-label, multicenter study of polyethylene glycol-l-asparaginase for the treatment of acute lymphoblastic leukemia. Cancer. 1995;75:1176–81. https://doi.org/10.1002/1097-0142(19950301)75:5%3c1176::AID-CNCR2820750519%3e3.0.CO;2-Y.

    Article  CAS  PubMed  Google Scholar 

  40. Brumano LP, Silva FVS, Costa-Silva TA, Apolinario AC, Santos JHP, Kleingesinds EK, Monteiro G, Rangel-Yagui CO, Benyahia B, Pessoa A Jr. Development of l-asparaginase biobetters: current research status and review of the desirable quality profiles. Bioeng Biotechnol. 2019;6:1–9. https://doi.org/10.3389/fbioe.2018.00212.

    Article  Google Scholar 

  41. Masurekar A, Fong C, Hussein A, Revesz T, Hoogerbrugge PM, Love S, et al. The optimal use of PEG-asparaginase in relapsed ALL-Lessons from the ALLR3 clinical trial. Blood Cancer J. 2014;4:4–6. https://doi.org/10.1038/bcj.2014.26.

    Article  Google Scholar 

  42. Angiolillo AL, Schore RJ, Devidas M, Borowitz MJ, Carroll AJ, Gastier-Foster JM, et al. Pharmacokinetic and pharmacodynamic properties of calaspargase pegol Escherichia coli L-asparaginase in the treatment of patients with acute lymphoblastic leukemia: results from children’s oncology group study AALL07P4. J Clin Oncol. 2014;32:3874–82. https://doi.org/10.1200/JCO.2014.55.5763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lehmann-horn K, Sagan SA, Bernard CCA, Sobel A, Zamvil SS, Wanna AGB, et al. This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please c. Laryngoscope 2014:2–31.

  44. Henriksen LT, Harila-Saari A, et al. PEG-asparaginase allergy in children with acute lymphoblastic leukemia in the NOPHO ALL2008 protocol. Pediatr Blood Cancer. 2015;1:1–7. https://doi.org/10.1002/pbc.25319.

    Article  CAS  Google Scholar 

  45. Pession A, Valsecchi MG, Masera G, Kamps WA, Magyarosy E, Rizzari C, et al. Long-term results of a randomized trial on extended use of high dose L-asparaginase for standard risk childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23:7161–7. https://doi.org/10.1200/JCO.2005.11.411.

    Article  CAS  PubMed  Google Scholar 

  46. Yen HJ, Chang WH, Liu HC, Yeh TC, Hung GY, Wu KH, et al. Outcomes following discontinuation of E. coli L-asparaginase upon severe allergic reactions in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2016;63:665–70. https://doi.org/10.1002/pbc.25869.

  47. Willer A, Gerß J, König T, Franke D, Kühnel HJ, Henze G, et al. Anti-Escherichia coli asparaginase antibody levels determine the activity of second-line treatment with pegylated E. coli asparaginase: a retrospective analysis within the ALL-BFM trials. Blood. 2011;118:5774–82. https://doi.org/10.1182/blood-2011-07-367904.

    Article  CAS  PubMed  Google Scholar 

  48. Vrooman LM, Stevenson KE, Supko JG, O’Brien J, Dahlberg SE, Asselin BL, et al. Postinduction dexamethasone and individualized dosing of Escherichia coli l-asparaginase each improve outcome of children and adolescents with newly diagnosed acute lymphoblastic leukemia: results from a randomized study—Dana-Farber Cancer Institute ALL. J Clin Oncol. 2013;31:1202–10. https://doi.org/10.1200/JCO.2012.43.2070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gebauer M, Skerra A. Prospects of PASylation® for the design of protein and peptide therapeutics with extended half-life and enhanced action. Bioorg Med Chem. 2018;26:2882–7. https://doi.org/10.1016/j.bmc.2017.09.016.

    Article  CAS  PubMed  Google Scholar 

  50. Halfon-Domenech C, Thomas X, Chabaud S, Baruchel A, Gueyffier F, Mazingue F, et al. L-asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: results of the GRASPALL 2005–01 randomized trial. Br J Haematol. 2011;153:58–65. https://doi.org/10.1111/j.1365-2141.2011.08588.x.

    Article  CAS  Google Scholar 

  51. El-Naggar NEA, El-Ewasy SM, El-Shweihy NM. Microbial L-asparaginase as a potential therapeutic agent for the treatment of acute lymphoblastic leukemia: the pros and cons. Int J Pharmacol. 2014;10:182–99. https://doi.org/10.3923/ijp.2014.182.199.

    Article  CAS  Google Scholar 

  52. Ali U, Naveed M, Ullah A, Ali K, Shah SA, Fahad S, et al. L-asparaginase as a critical component to combat Acute Lymphoblastic Leukaemia (ALL): a novel approach to target ALL. Eur J Pharmacol. 2016;771:199–210. https://doi.org/10.1016/j.ejphar.2015.12.023.

    Article  CAS  PubMed  Google Scholar 

  53. Raja RA, Schmiegelow K, Frandsen TL. Asparaginase-associated pancreatitis in children. Br J Haematol. 2012;159:18–27. https://doi.org/10.1111/bjh.12016.

    Article  CAS  PubMed  Google Scholar 

  54. Knoderer HM, Robarge J. Predicting asparaginase-associated pancreatitis. Pediatr Blood Cancer. 2007;49:634–9.

    Article  PubMed  Google Scholar 

  55. Flores-Calderón J, Exiga-Gonzaléz E, Morán-Villota S, Martín-Trejo J, Yamamoto-Nagano A. Acute pancreatitis in children with acute lymphoblastic leukemia treated with L-asparaginase. J Pediatr Hematol Oncol. 2009;31:790–3. https://doi.org/10.1097/MPH.0b013e3181b794e8.

    Article  PubMed  Google Scholar 

  56. Thoeni RF. The revised Atlanta classification of acute pancreatitis: its importance for the radiologist and its effect on treatment. Radiology. 2012;262:751–64. https://doi.org/10.1148/radiol.11110947.

    Article  PubMed  Google Scholar 

  57. Avramis VI, Sencer S, Periclou AP, Sather H, Bostrom BC, Cohen LJ, et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children’s Cancer Group study. Blood. 2002;99:1986–94. https://doi.org/10.1182/blood.V99.6.1986.

    Article  CAS  PubMed  Google Scholar 

  58. Seibel NL, Steinherz PG, Sather HN, Nachman JB, Delaat C, Ettinger LJ, et al. Early postinduction intensification therapy improves survival for children and adolescents with high-risk acute lymphoblastic leukemia: a report from the children’s oncology group. Blood. 2008;111:2548–55. https://doi.org/10.1182/blood-2007-02-070342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang B, Relling MV, Storm MC, Woo MH, Ribeiro R, Pui CH, et al. Evaluation of immunologic crossreaction of antiasparaginase antibodies in acute lymphoblastic leukemia (ALL) and lymphoma patients. Leukemia. 2003;17:1583–8. https://doi.org/10.1038/sj.leu.2403011.

    Article  CAS  PubMed  Google Scholar 

  60. Burke MJ. How to manage asparaginase hypersensitivity in acute lymphoblastic leukemia. Futur Oncol. 2014;10:2615–27. https://doi.org/10.2217/fon.14.138.

    Article  CAS  Google Scholar 

  61. Pui CH, Liu Y, Relling MV. How to solve the problem of hypersensitivity to asparaginase? Pediatr Blood Cancer. 2018;65:19–20. https://doi.org/10.1002/pbc.26884.

    Article  Google Scholar 

  62. Asselin BL, Whitin JC, Coppola DJ, Rupp IP, Sallan SE, Cohen HJ. Comparative pharmacokinetic studies of three asparaginase preparations. J Clin Oncol. 1993;11:1780–6. https://doi.org/10.1200/JCO.1993.11.9.1780.

    Article  CAS  PubMed  Google Scholar 

  63. Leukemia L, Wacker P, Land VJ, Camitta BM, Kurtzberg J, Pullen J, et al. Allergic reactions to E. coli l-asparaginase do not affect outcome in childhood B-precursor acute. J Pediatr Hematol Oncol. 2007;29:627–32.

  64. Vrooman LMGS. Erwinia asparaginase after allergy to E. coli asparaginase in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2010;54:199–205. https://doi.org/10.1002/pbc.22225.

  65. Raetz EA, Salzer WL. Tolerability and efficacy of l-asparaginase therapy in pediatric patients with acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2010;32:554–63.

    Article  CAS  PubMed  Google Scholar 

  66. Jazz Pharmaceuticals I. ERWINAZE [package insert]. Palo Alto, 2014.

  67. Paul V. Plourde, Sima Jeha, Nobuko Hijiya, Frank G. Keller, Lewis B. Silverman, Susan R. Rheingold, ZoAnn E. Dreyer, Gary V. Dahl, Taheri Mercedes, Chinglin Lai, and Tim Corn M. Safety profile of asparaginase erwinia chrysanthemi in a large compassionate-use trial. Pediatr Blood Cancer 2014;61:1232–8. https://doi.org/10.1002/pbc.

  68. Tong WH, Pieters R, Kaspers GJL, Te Loo DMWM, Bierings MB, Van Den Bos C, et al. A prospective study on drug monitoring of PEG asparaginase and Erwinia asparaginase and asparaginase antibodies in pediatric acute lymphoblastic leukemia. Blood. 2014;123:2026–33. https://doi.org/10.1182/blood-2013-10-534347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Moghrabi A, Levy DE, Asselin B, Barr R, Clavell L, Hurwitz C, et al. Results of the Dana-Farber Cancer Institute ALL Consortium Protocol 95–01 for children with acute lymphoblastic leukemia. Blood. 2007;109:896–904. https://doi.org/10.1182/blood-2006-06-027714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Avramis VI. Asparaginases: biochemical pharmacology and modes of drug resistance. Anticancer Res. 2012;32:2423–37.

    CAS  PubMed  Google Scholar 

  71. Zalewska-Szewczyk B, et al. The anti-asparagines antibodies correlate with L-asparagines activity and may affect clinical outcome of childhood acute lymphoblastic leukemia. Leuk Lymphoma. 2007;48(5):931–6.

    Article  CAS  PubMed  Google Scholar 

  72. Kawahara Y, Morimoto A, Hayase T, Kashii Y, Fukuda T, Momoi MY. Monitoring of anti-l-asparaginase antibody and l-asparaginase activity levels in a pediatric patient with acute lymphoblastic leukemia and hypersensitivity to native Escherichia coli l-asparaginase during desensitization courses. J Pediatr Hematol Oncol. 2014;36:2013–5. https://doi.org/10.1097/MPH.0b013e3182986559.

    Article  Google Scholar 

  73. Pieters R, Appel I, Kuehnel HJ, Tetzlaff-Fohr I, Pichlmeier U, Van Der Vaart I, et al. Pharmacokinetics, pharmacodynamics, efficacy, and safety of a new recombinant asparaginase preparation in children with previously untreated acute lymphoblastic leukemia: a randomized phase 2 clinical trial. Blood. 2008;112:4832–8. https://doi.org/10.1182/blood-2008-04-149443.

    Article  CAS  PubMed  Google Scholar 

  74. Krishnapura PR, Belur PD, Subramanya S. A critical review on properties and applications of microbial l-asparaginases. Crit Rev Microbiol. 2016;42:720–37. https://doi.org/10.3109/1040841X.2015.1022505.

    Article  CAS  PubMed  Google Scholar 

  75. D’souza AA, Shegokar R. Polyethylene glycol (PEG): a versatile polymer for pharmaceutical applications. Expert Opin Drug Deliv. 2016;13:1257–75. https://doi.org/10.1080/17425247.2016.1182485.

    Article  CAS  PubMed  Google Scholar 

  76. Suri Vasudev S, Ahmad S, Parveen R, Ahmad FJ, Anish CK, Ali M, et al. Formulation of PEG-ylated l-asparaginase loaded poly (lactide-co-glycolide) nanoparticles: Influence of PEGylation on enzyme loading, activity and in vitro release. Pharmazie. 2011;66:956–60. https://doi.org/10.1691/ph.2011.1058.

    Article  CAS  PubMed  Google Scholar 

  77. Kumar S, Venkata Dasu V, Pakshirajan K. Purification and characterization of glutaminase-free l-asparaginase from Pectobacterium carotovorum MTCC 1428. Bioresour Technol. 2011;102:2077–82. https://doi.org/10.1016/j.biortech.2010.07.114.

    Article  CAS  PubMed  Google Scholar 

  78. Effer B, Lima GM, Cabarca S, Pessoa A, Farías JG, Monteiro G. L-Asparaginase from E. chrysanthemi expressed in glycoswitch®: effect of His-Tag fusion on the extracellular expression. Prep Biochem Biotechnol 2019;49:679–85. https://doi.org/10.1080/10826068.2019.1599396.

  79. Nadeem T, Khan MA, Ijaz B, Ahmed N, Rahman Zur, Latif MS, et al. Glycosylation of recombinant anticancer therapeutics in different expression systems with emerging technologies. Cancer Res 2018;78:2787–98. https://doi.org/10.1158/0008-5472.CAN-18-0032.

  80. Chien WW, Allas S, Rachinel N, Sahakian P, Julien M, Le Beux C, et al. Pharmacology, immunogenicity, and efficacy of a novel pegylated recombinant Erwinia chrysanthemi-derived L-asparaginase. Invest New Drugs. 2014;32:795–805. https://doi.org/10.1007/s10637-014-0102-9.

    Article  CAS  PubMed  Google Scholar 

  81. Vidya J, Ushasree MV, Pandey A. Effect of surface charge alteration on stability of l-asparaginase II from Escherichia sp. Enzyme Microb Technol. 2014;56:15–9. https://doi.org/10.1016/j.enzmictec.2013.12.012.

    Article  CAS  PubMed  Google Scholar 

  82. Brumano LP, da Silva FVS, Costa-Silva TA, Apolinário AC, Santos JHPM, Kleingesinds EK, et al. Development of l-asparaginase biobetters: current research status and review of the desirable quality profiles. Front Bioeng Biotechnol. 2019;6:1–22. https://doi.org/10.3389/fbioe.2018.00212.

    Article  Google Scholar 

  83. Belén LH, Lissabet JB, de Oliveira R-Y, Effer B, Monteiro G, Pessoa A, et al. A structural in silico analysis of the immunogenicity of l-asparaginase from Escherichia coli and Erwinia carotovora. Biologicals. 2019;59:47–55. https://doi.org/10.1016/j.biologicals.2019.03.003.

    Article  CAS  PubMed  Google Scholar 

  84. Datta S, Christena LR, Rajaram YRS. Enzyme immobilization: an overview on techniques and support materials. Biotechnology. 2013;3:1–9. https://doi.org/10.1007/s13205-012-0071-7.

    Article  Google Scholar 

  85. Bosio VE, Islan GA, Martínez YN, Durán N, Castro GR. Nanodevices for the immobilization of therapeutic enzymes. Crit Rev Biotechnol. 2016;36:447–64. https://doi.org/10.3109/07388551.2014.990414.

    Article  CAS  PubMed  Google Scholar 

  86. Keck CM, Müller RH. Nanotoxicological classification system (NCS)—a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur J Pharm Biopharm. 2013;84:445–8. https://doi.org/10.1016/j.ejpb.2013.01.001.

    Article  CAS  PubMed  Google Scholar 

  87. Blackman LD, Varlas S, Arno MC, Houston ZH, Fletcher NL, Thurecht KJ, et al. Confinement of therapeutic enzymes in selectively permeable polymer vesicles by polymerization-induced self-assembly (PISA) reduces antibody binding and proteolytic susceptibility. ACS Cent Sci. 2018;4:718–23. https://doi.org/10.1021/acscentsci.8b00168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. European Medicines Agency. Graspa: Withdrawal of the marketing authorisation application. EMA/431413/2018; 2018.

  89. Torres-Obreque K, Meneguetti GP, Custódio D, Monteiro G, Pessoa-Junior A, de Oliveira R-Y. Production of a novel N-terminal PEGylated crisantaspase. Biotechnol Appl Biochem. 2019;66:281–9. https://doi.org/10.1002/bab.1723.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Agencia Nacional de Investigación y Desarrollo (ANID) Fellowship No. 21210710 and the National Council for Scientifc and Technological Development (CNPq/Brazil, Fellowship # 301832/2017–0).

Author information

Authors and Affiliations

Authors

Contributions

María Tosta and Lisandra Herrera had the idea for the article; María Tosta, Pablo Letelier and Yolana Calle performed the literature search; Lisandra Herrera drafted the article, and Adalberto Pessoa and Jorge Farías critically revised the work.

Corresponding author

Correspondence to Jorge G. Farías.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosta Pérez, M., Herrera Belén, L., Letelier, P. et al. l-Asparaginase as the gold standard in the treatment of acute lymphoblastic leukemia: a comprehensive review. Med Oncol 40, 150 (2023). https://doi.org/10.1007/s12032-023-02014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02014-9

Keywords

Navigation