Skip to main content

Advertisement

Log in

Understanding the functional relevance of oral neutrophils, phenotype and properties in OSCC

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Neutrophils are the predominant white blood cells (WBC) that are recruited to the sites of inflammation and infection. They are acknowledged to perform dual roles by promoting (pro-tumor) or by exhibiting anti-cancer properties (anti-tumor). Neutrophils are characterized based on the changes in phenotype and functional properties. To this context, circulating polymorphonuclear neutrophils (cPMN) and tumor-associated neutrophils (TANs) in cancer biology has been well explored but limited to oral polymorphonuclear neutrophils (oPMNs) in oral squamous cell carcinoma (OSCC). However, oPMNs are eminent in maintaining the healthy oral ecosystem by neutralizing microorganisms. Neutralization process enhances the expression of cell surface markers (CD11b, CD63, CD66, CD66b, CD66c, and CD66e) and inflammatory cytokines (TNF-α, IFN-γ, GM-CSF, and IL-8) and increases the recruitment of neutrophils. Along with the inflammation, it has been reported that CEACAM1 and chemerin also favors the infiltration of neutrophils to the cancer site. This indicates that oPMN might contribute to the aetiology of OSCC. The main objective of this review is to explore, the production and migration of oPMNs to the oral cavity, their phenotypes and possible role in OSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data were collected from Scopus, PubMed and goggle scholar.

Abbreviations

cPMN:

Circulating polymorphonuclear neutrophils

oPMN:

Oral polymorphonuclear neutrophils

IL:

Interleukin

MMP:

Matrix metallopeptidase

CXCL:

C-X-C Motif chemokine ligand

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

TNF:

Tumor Necrosis Factor

fMLP:

N-formyl-methionyl-leucyl-phenylalanine

GM-CSF:

Granulocyte macrophage colony-stimulating factor

TIMP:

Tissue inhibitor of metalloproteinase

References

  1. Rivera C. Essentials of oral cancer. Int J Clin Exp Pathol. 2015;8(9):11884–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Usman S, et al. Major molecular signaling pathways in oral cancer associated with therapeutic resistance. Front Oral Health. 2021. https://doi.org/10.3389/froh.2020.603160.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Siegel R, et al. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.

    Article  PubMed  Google Scholar 

  4. Le Campion A, Ribeiro CMB. Low survival rates of oral and oropharyngeal squamous cell carcinoma. Int J Dent. 2017;2017:5815493.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sathiasekar AC, et al. Oral field cancerization and its clinical implications in the management in potentially malignant disorders. J Pharm Bioallied Sci. 2017;9(Suppl 1):S23-s25.

    PubMed  PubMed Central  Google Scholar 

  6. Xiong S, Dong L, Cheng L. Neutrophils in cancer carcinogenesis and metastasis. J Hematol Oncol. 2021;14(1):173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Domnich M, et al. Oral neutrophils: underestimated players in oral cancer. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.565683.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wang N, et al. Neutrophils infiltration in the tongue squamous cell carcinoma and its correlation with CEACAM1 expression on tumor cells. PLoS ONE. 2014;9(2):e89991.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Granot Z. Neutrophils as a therapeutic target in cancer. Front Immunol. 2019;10:1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Trellakis S, et al. Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. Int J Cancer. 2011;129(9):2183–93.

    Article  CAS  PubMed  Google Scholar 

  11. Rijkschroeff P, Loos BG, Nicu EA. oral polymorphonuclear neutrophil contributes to oral health. Curr Oral Health Rep. 2018;5(4):211–20.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kilian M, et al. The oral microbiome—an update for oral healthcare professionals. Br Dent J. 2016;221(10):657–66.

    Article  CAS  PubMed  Google Scholar 

  13. Lenka S, Bhuyan SK, Bhuyan R. Understanding the characteristics of the host genome and microbiome interaction in oral squamous cell carcinoma: a narrative review. Beni-Suef Univ J Basic Appl Sci. 2022;11(1):126.

    Article  Google Scholar 

  14. Rosales C. Neutrophil: a cell with many roles in inflammation or several cell types? Front Physiol. 2018;9:113.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Moonen CGJ, et al. Oral neutrophils characterized: chemotactic, phagocytic, and neutrophil extracellular trap (NET) formation properties. Front Immunol. 2019;10:635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Domnich M, et al. Oral Neutrophils: underestimated players in oral cancer. Front Immunol. 2020;11:565683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scott DA, Krauss J. Neutrophils in periodontal inflammation. Front Oral Biol. 2012;15:56–83.

    Article  PubMed  Google Scholar 

  18. Yamamoto M, Saeki K, Utsumi K. Isolation of human salivary polymorphonuclear leukocytes and their stimulation-coupled responses. Arch Biochem Biophys. 1991;289(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  19. Uribe-Querol E, Rosales C. Neutrophils in cancer: two sides of the same coin. J Immunol Res. 2015;2015:983698.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Martinez FO, et al. IL-8 induces a specific transcriptional profile in human neutrophils: synergism with LPS for IL-1 production. Eur J Immunol. 2004;34(8):2286–92.

    Article  CAS  PubMed  Google Scholar 

  21. Hu X, et al. Neutrophils promote tumor progression in oral squamous cell carcinoma by regulating EMT and JAK2/STAT3 signaling through chemerin. Front Oncol. 2022;12:812044.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sahibzada HA, et al. Salivary IL-8, IL-6 and TNF-α as potential diagnostic biomarkers for oral cancer. Diagnostics. 2017;7(2):21.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ferrari E, et al. Salivary cytokines as biomarkers for oral squamous cell carcinoma: a systematic review. Int J Mol Sci. 2021;22(13):6795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Magalhaes MA, Glogauer JE, Glogauer M. Neutrophils and oral squamous cell carcinoma: lessons learned and future directions. J Leukoc Biol. 2014;96(5):695–702.

    Article  PubMed  Google Scholar 

  25. Lakschevitz FS, et al. Identification of neutrophil surface marker changes in health and inflammation using high-throughput screening flow cytometry. Exp Cell Res. 2016;342(2):200–9.

    Article  CAS  PubMed  Google Scholar 

  26. Fine N, et al. Distinct oral neutrophil subsets define health and periodontal disease states. J Dent Res. 2016;95(8):931–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hirschfeld J. Neutrophil subsets in periodontal health and disease: a mini review. Front Immunol. 2019;10:3001.

    Article  CAS  PubMed  Google Scholar 

  28. Wu L, et al. Tumor-associated neutrophils in cancer: going pro. Cancers. 2019;11(4):564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fridlender ZG, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andzinski L, et al. Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer. 2016;138(8):1982–93.

    Article  CAS  PubMed  Google Scholar 

  31. Glogauer JE, et al. Neutrophils increase oral squamous cell carcinoma invasion through an invadopodia-dependent pathway. Cancer Immunol Res. 2015;3(11):1218–26.

    Article  CAS  PubMed  Google Scholar 

  32. Sagiv JY, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562–73.

    Article  CAS  PubMed  Google Scholar 

  33. Jablonska E, et al. VEGF, IL-18 and NO production by neutrophils and their serum levels in patients with oral cavity cancer. Cytokine. 2005;30(3):93–9.

    Article  CAS  PubMed  Google Scholar 

  34. Scheibenbogen C, et al. Serum interleukin-8 (IL-8) is elevated in patients with metastatic melanoma and correlates with tumour load. Melanoma Res. 1995;5(3):179–82.

    Article  CAS  PubMed  Google Scholar 

  35. Schmidt H, et al. Elevated neutrophil and monocyte counts in peripheral blood are associated with poor survival in patients with metastatic melanoma: a prognostic model. Br J Cancer. 2005;93(3):273–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dumitru CA, et al. Tumor-derived macrophage migration inhibitory factor modulates the biology of head and neck cancer cells via neutrophil activation. Int J Cancer. 2011;129(4):859–69.

    Article  CAS  PubMed  Google Scholar 

  37. Trellakis S, et al. Peripheral blood neutrophil granulocytes from patients with head and neck squamous cell carcinoma functionally differ from their counterparts in healthy donors. Int J Immunopathol Pharmacol. 2011;24(3):683–93.

    Article  CAS  PubMed  Google Scholar 

  38. Decker AS, et al. Prognostic role of blood NETosis in the progression of head and neck cancer. Cells. 2019;8(9):946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Giese MA, Hind LE. Neutrophil plasticity in the tumor microenvironment. Blood. 2019;133(20):2159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gonzalez H, Hagerling C, Werb Z. Roles of the immune system in cancer: from tumor initiation to metastatic progression. Gene Dev. 2018;32(19–20):1267–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fridlender ZG, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arvanitakis K, Mitroulis I, Germanidis G. Tumor-associated neutrophils in hepatocellular carcinoma pathogenesis, prognosis, and therapy. Cancers. 2021;13(12):2899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Masucci MT, Minopoli M, Carriero MV. Tumor associated neutrophils: their role in tumorigenesis, metastasis, prognosis and therapy. Front Oncol. 2019;9:1146.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shaul ME, et al. Tumor-associated neutrophils display a distinct N1 profile following TGFβ modulation: a transcriptomics analysis of pro- vs antitumor TANs. OncoImmunology. 2016;5(11):e1232221.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ohms M, Möller S, Laskay T. An attempt to polarize human neutrophils toward N1 and N2 phenotypes in vitro. Front Immunol. 2020;11:532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. GómezRomán VR, Murray JC, Weiner LM. Chapter 1—antibody-dependent cellular cytotoxicity (ADCC). In: Ackerman ME, Nimmerjahn F, editors. Antibody Fc. Academic Press: Boston; 2014. p. 1–27.

    Google Scholar 

  47. Singh JK, et al. Recent advances reveal IL-8 signaling as a potential key to targeting breast cancer stem cells. Breast Cancer Res. 2013;15(4):210.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Güngör N, et al. Genotoxic effects of neutrophils and hypochlorous acid. Mutagenesis. 2010;25(2):149–54.

    Article  PubMed  Google Scholar 

  49. Houghton AM, et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med. 2010;16(2):219–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Das A, et al. MMP proteolytic activity regulates cancer invasiveness by modulating integrins. Sci Rep. 2017;7(1):14219.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rotondo R, et al. IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. Int J Cancer. 2009;125(4):887–93.

    Article  CAS  PubMed  Google Scholar 

  52. Yachimovich-Cohen N, et al. Human embryonic stem cells suppress T cell responses via arginase I-dependent mechanism. J Immunol. 2010;184(3):1300–8.

    Article  CAS  PubMed  Google Scholar 

  53. Yang J, et al. Loss of CXCR4 in myeloid cells enhances antitumor immunity and reduces melanoma growth through NK cell and FASL mechanisms. Cancer Immunol Res. 2018;6(10):1186–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Michaeli J, et al. Tumor-associated neutrophils induce apoptosis of non-activated CD8 T-cells in a TNFα and NO-dependent mechanism, promoting a tumor-supportive environment. Oncoimmunology. 2017;6(11):e1356965.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sun B, et al. Neutrophil suppresses tumor cell proliferation via Fas /Fas ligand pathway mediated cell cycle arrested. Int J Biol Sci. 2018;14(14):2103–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matlung HL, et al. Neutrophils kill antibody-opsonized cancer cells by trogoptosis. Cell Rep. 2018;23(13):3946-3959.e6.

    Article  CAS  PubMed  Google Scholar 

  57. Lakschevitz FS, Aboodi GM, Glogauer M. Oral neutrophils display a site-specific phenotype characterized by expression of T-cell receptors. J Periodontol. 2013;84(10):1493–503.

    Article  CAS  PubMed  Google Scholar 

  58. Brekke OL, et al. The role of complement C3 opsonization, C5a receptor, and CD14 in E coli-induced up-regulation of granulocyte and monocyte CD11b/CD18 (CR3), phagocytosis, and oxidative burst in human whole blood. J Leukoc Biol. 2007;81(6):1404–13.

    Article  CAS  PubMed  Google Scholar 

  59. Kuijpers TW, et al. Membrane surface antigen expression on neutrophils: a reappraisal of the use of surface markers for neutrophil activation. Blood. 1991;78(4):1105–11.

    Article  CAS  PubMed  Google Scholar 

  60. Irani S, Barati I, Badiei M. Periodontitis and oral cancer—current concepts of the etiopathogenesis. Oncol Rev. 2020;14(1):465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Elebyary O, et al. The crossroads of periodontitis and oral squamous cell carcinoma: immune implications and tumor promoting capacities. Front Oral Health. 2021. https://doi.org/10.3389/froh.2020.584705.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Tomita M, et al. Preoperative neutrophil to lymphocyte ratio as a prognostic predictor after curative resection for non-small cell lung cancer. Anticancer Res. 2011;31(9):2995–8.

    PubMed  Google Scholar 

  63. Singh S, et al. Diagnostic efficacy of neutrophil to lymphocyte ratio (NLR) in oral potentially malignant disorders and oral cancer. Indian J Pathol Microbiol. 2021;64(2):243–9.

    CAS  PubMed  Google Scholar 

  64. Bhuyan R, et al. Periodontitis and its inflammatory changes linked to various systemic diseases: a review of its underlying mechanisms. Biomedicines. 2022;10(10):2659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Laliberté C, et al. Characterization of oral squamous cell carcinoma associated inflammation: a pilot study. Front Oral Health. 2021;2:740469.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the president of Siksha ‘O’ Anusandhan (deemed to be university), India for giving the required facilities to carry out the aforementioned study.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

SL performed literature searches and wrote the manuscript. RB and RKB contributed to the concept and reviewed the manuscript. PRV and SB edited and designed the manuscript. All authors contributed to manuscript revision, and approved the submitted version.

Corresponding author

Correspondence to Ruchi Bhuyan.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenka, S., Bhola, R.K., Varanasi, P.R. et al. Understanding the functional relevance of oral neutrophils, phenotype and properties in OSCC. Med Oncol 40, 134 (2023). https://doi.org/10.1007/s12032-023-02010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02010-z

Keywords

Navigation