Skip to main content

Advertisement

Log in

The effects of KIR2DL4 stimulated NK-92 cells on the apoptotic pathways of HER2 + /HER-breast cancer cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Natural killer (NK) cells are immune cells that have attracted significant attention due to their cytotoxic properties. They are believed to be highly effective in cancer therapy. In this study, anti-KIR2DL4 (Killer cell Immunoglobulin like Receptor, 2 Ig Domains and Long cytoplasmic tail 4) was used to stimulate the NK-92 activator receptor to increase their cytotoxicity on breast cancer cell lines. Unstimulated and stimulated NK-92 cells (sNK-92) were cocultured with breast cancer (MCF-7 and SK-BR-3) and normal breast (MCF-12A) cell lines at 1:1, 1:5, and 1:10 (Target:Effector) ratios. The most effective cell cytotoxicity ratio (1:10) was used in the immunostaining and western blot assays to evaluate apoptosis pathway proteins. The sNK-92 cells showed higher cytotoxic activity on breast cancer cells than NK-92 cells. sNK-92 cells had a selective significant cytotoxicity effect on MCF-7 and SK-BR-3 cells but not MCF-12A cells. While sNK-92 cells were effective at all cell concentrations, they were most effective at a 1:10 ratio. Immunostaining and western blots showed significantly higher BAX, caspase 3, and caspase 9 protein levels in all breast cancer cell groups cocultured with sNK-92 than with NK-92 cells. NK-92 cells stimulated with KIR2DL4 showed elevated cytotoxic activity. The cytotoxic activity of sNK-92 cells on breast cancer cells is via apoptosis pathways. However, their effect on normal breast cells is limited. While the obtained data contains only basic information, additional clinical studies are needed to provide a basis for a new treatment model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou J. Advances and prospects in cancer immunotherapy. New J Sci. 2014. https://doi.org/10.1155/2014/745808.

    Article  Google Scholar 

  3. Bayraktar R, Pichler M, Kanlikilicer P, et al. MicroRNA 603 acts as a tumor suppressor and inhibits triple negative breast cancer tumorigenesis by targeting elongation factor 2 kinase. Oncotarget. 2017;8(7):11641.

    Article  PubMed  Google Scholar 

  4. Hamilton G, Reiner A, Teleky B, et al. Natural killer cell activities of patients with breast cancer against different target cells. J Cancer Res Clin Oncol. 1988;114(2):191–6. https://doi.org/10.1007/BF00417836.

    Article  CAS  PubMed  Google Scholar 

  5. Mittendorf EA, Philips AV, Meric-Bernstam F, et al. PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2014;2(4):361–70. https://doi.org/10.1158/2326-6066.CIR-13-0127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wayteck L, Breckpot K, Demeester J, De Smedt SC, Raemdonck K. A personalized view on cancer immunotherapy. Cancer Lett. 2014;352(1):113–25. https://doi.org/10.1016/j.canlet.2013.09.016.

    Article  CAS  PubMed  Google Scholar 

  7. Beatty GL, Gladney WL. Immune escape mechanisms as a guide for cancer immunotherapy. Clin Cancer Res. 2015;21(4):687–92.

    Article  CAS  PubMed  Google Scholar 

  8. Huang BY, Zhan YP, Zong WJ, et al. The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells. PLoS One. 2015;10(8):e134715. https://doi.org/10.1371/journal.pone.0134715.

    Article  CAS  Google Scholar 

  9. Lesokhin AM, Callahan MK, Postow MA, Wolchok JD. On being less tolerant: enhanced cancer immunosurveillance enabled by targeting checkpoints and agonists of T cell activation. Sci Transl Med. 2015;7(280):280sr1-80sr1.

    Article  PubMed  Google Scholar 

  10. Stojanovic A, Fiegler N, Brunner-Weinzierl M, Cerwenka A. CTLA-4 is expressed by activated mouse NK cells and inhibits NK cell IFN-γ production in response to mature dendritic cells. J Immunol. 2014;192(9):4184–91.

    Article  CAS  PubMed  Google Scholar 

  11. Westin JR, Chu F, Zhang M, et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 2014;15(1):69–77. https://doi.org/10.1016/S1470-2045(13)70551-5.

    Article  CAS  PubMed  Google Scholar 

  12. Tonn T, Schwabe D, Klingemann HG, et al. Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy. 2013;15(12):1563–70.

    Article  CAS  PubMed  Google Scholar 

  13. Cheent K, Khakoo SI. Natural killer cells and hepatitis C: action and reaction. Gut. 2011;60(2):268–78. https://doi.org/10.1136/gut.2010.212555.

    Article  CAS  PubMed  Google Scholar 

  14. Liu C, Yu S, Kappes J, et al. Expansion of spleen myeloid suppressor cells represses NK cell cytotoxicity in tumor-bearing host. Blood. 2007;109(10):4336–42. https://doi.org/10.1182/blood-2006-09-046201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Romagné F, André P, Spee P, et al. Preclinical characterization of 1–7F9, a novel human anti–KIR receptor therapeutic antibody that augments natural killer–mediated killing of tumor cells. Blood, J Am Soc Hematol. 2009;114(13):2667–77.

    Google Scholar 

  16. Shah N, Shpall EJ. NK antibody therapy: KIR-ative intent. Blood. 2009;114(13):2567–8. https://doi.org/10.1182/blood-2009-07-230904.

    Article  CAS  PubMed  Google Scholar 

  17. Zingoni A, Sornasse T, Cocks BG, Tanaka Y, Santoni A, Lanier LL. NK cell regulation of T cell-mediated responses. Mol Immunol. 2005;42(4):451–4. https://doi.org/10.1016/j.molimm.2004.07.025.

    Article  CAS  PubMed  Google Scholar 

  18. Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH. Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol. 2011;89(2):216–24. https://doi.org/10.1038/icb.2010.78.

    Article  PubMed  Google Scholar 

  19. Leung W. Infusions of allogeneic natural killer cells as cancer therapy. Clin Cancer Res. 2014;20(13):3390–400.

    Article  CAS  PubMed  Google Scholar 

  20. Le Mercier I, Lines JL, Noelle RJ. Beyond CTLA-4 and PD-1, the generation Z of negative checkpoint regulators. Front Immunol. 2015;6:418. https://doi.org/10.3389/fimmu.2015.00418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ponte M, Cantoni C, Biassoni R, et al. Inhibitory receptors sensing HLA-G1 molecules in pregnancy: decidua-associated natural killer cells express LIR-1 and CD94/NKG2A and acquire p49, an HLA-G1-specific receptor. Proc Natl Acad Sci U S A. 1999;96(10):5674–9. https://doi.org/10.1073/pnas.96.10.5674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rajagopalan S, Fu J, Long EO. Cutting edge: induction of IFN-γ production but not cytotoxicity by the killer cell Ig-like receptor KIR2DL4 (CD158d) in resting NK cells. J Immunol. 2001;167(4):1877–81.

    Article  CAS  PubMed  Google Scholar 

  23. Selvakumar A, Steffens U, Dupont B. NK cell receptor gene of the KIR family with two IG domains but highest homology to KIR receptors with three IG domains. Tissue Antigens. 1996;48(4 Pt 1):285–94. https://doi.org/10.1111/j.1399-0039.1996.tb02647.x.

    Article  CAS  PubMed  Google Scholar 

  24. Goodridge JP, Lathbury LJ, John E, Charles AK, Christiansen FT, Witt CS. The genotype of the NK cell receptor, KIR2DL4, influences INFgamma secretion by decidual natural killer cells. Mol Hum Reprod. 2009;15(8):489–97. https://doi.org/10.1093/molehr/gap039.

    Article  CAS  PubMed  Google Scholar 

  25. Kataoka TR, Ueshima C, Hirata M, Minamiguchi S, Haga H. Killer immunoglobulin-like receptor 2DL4 (Cd158d) regulates human mast cells both positively and negatively: Possible roles in pregnancy and cancer metastasis. Int J Mol Sci. 2020;21(3):954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sutlu T, Alici E. Natural killer cell-based immunotherapy in cancer: current insights and future prospects. J Intern Med. 2009;266(2):154–81.

    Article  CAS  PubMed  Google Scholar 

  27. Lanier LL. Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol. 2008;9(5):495–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Khanna V, Panyam J, Griffith TS. Exploiting antibody biology for the treatment of cancer. Immunotherapy. 2020;12(4):255–67.

    Article  CAS  PubMed  Google Scholar 

  29. Lin W, Voskens CJ, Zhang X, et al. Fc-dependent expression of CD137 on human NK cells: insights into “agonistic” effects of anti-CD137 monoclonal antibodies. Blood, J Am Soc Hematol. 2008;112(3):699–707.

    CAS  Google Scholar 

  30. Melero I, Hirschhorn-Cymerman D, Morales-Kastresana A, Sanmamed MF, Wolchok JD. Agonist antibodies to TNFR molecules that costimulate T and NK cells. Clin Cancer Res. 2013;19(5):1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karlitepe A, Atakul T, KILIÇ Eren M (2021) Cytotoxic Effect of cord blood derived natural killer cells on breast cancer cells. Turkish J Oncol/Türk Onkoloji Dergisi 36(2).

  32. Wang J, Sun Z-M, Cao L-L, Li Q. Biological characteristics of cord blood natural killer cells induced and amplified with IL-2 and IL-15. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2012;20(3):731–5.

    PubMed  Google Scholar 

  33. Turaj AH, Cox KL, Penfold CA, et al. Augmentation of CD134 (OX40)-dependent NK anti-tumour activity is dependent on antibody cross-linking. Sci Rep. 2018;8(1):1–11.

    Article  CAS  Google Scholar 

  34. Kohrt HE, Houot R, Weiskopf K, et al. Stimulation of natural killer cells with a CD137-specific antibody enhances trastuzumab efficacy in xenotransplant models of breast cancer. J Clin Investig. 2012;122(3):1066–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang S, Liu N, Ma M, et al. Methionine enkephalin (MENK) suppresses lung cancer by regulating the Bcl-2/Bax/Caspase-3 signaling pathway and enhancing natural killer cell-driven tumor immunity. Int Immunopharmacol. 2021;98:107837. https://doi.org/10.1016/j.intimp.2021.107837.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We thank Ankara University, Management of Scientific Research Projects (BAP project no. 20L0430006), for the financial support. We thank Ankara University, Management of Scientific Research Projects (BAP project no. 20L0430006), for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

MD and NK designed the experiments, developed the methodology analyzed results, prepared data presentations, and wrote and reviewed the draft manuscript. EY and IK analyzed results and reviewed the draft manuscript; IK was responsible for project administration and provision of study materials and equipment. MD was the project supervisor.

Corresponding author

Correspondence to Mohammadreza Dastouri.

Ethics declarations

Conflict of interest

The authors do not declare any conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Authors agreed to participate in this research.

Consent for publication

Authors has approved the last version of the manuscript for its submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilic, N., Dastouri, M., Kandemir, I. et al. The effects of KIR2DL4 stimulated NK-92 cells on the apoptotic pathways of HER2 + /HER-breast cancer cells. Med Oncol 40, 139 (2023). https://doi.org/10.1007/s12032-023-02009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02009-6

Keywords

Navigation