Skip to main content

Advertisement

Log in

Letter on “Role of gut microbiome in immune regulation and immune checkpoint therapy of colorectal cancer”

  • Letter to the Editor
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Investigations that decipher the human microbiome have reformed the way medicine is focusing on bacteria. An interesting research review recently published in the journal of Digestive Diseases and Sciences conceivably linked adjunctive commensal intestinal bacteria with the capacity to modulate the immune microenvironment towards immune checkpoint inhibitor (ICIs) efficacy of cancer immunotherapy. Evidence has emerged that the intestinal microbiome can modulate outcomes to ICIs therapies via two major mechanisms, namely mechanisms that are antigen-specific (i.e., epitopes are shared between microbial and tumour antigens that can enhance or reduce anti-tumour immune responses) and those mechanisms that are antigen-independent (i.e., modulation of responses to ICIs by engaging innate and/or adaptive immune cells).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Shi L, Xu Y, Feng M. Role of gut microbiome in immune regulation and immune checkpoint therapy of colorectal cancer. Dig Dis Sci. 2023;68:370–9.

    Article  CAS  PubMed  Google Scholar 

  2. Hayase E, Jenq RR. Role of the intestinal microbiome and microbial-derived metabolites in immune checkpoint blockade immunotherapy of cancer. Genome Med. 2021;13:107.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xiao L, Zhao F. Microbial transmission, colonisation and succession: from pregnancy to infancy. Gut. 2023;72(4):772–86.

    Article  CAS  PubMed  Google Scholar 

  4. Adel-Khattab D, Groeger S, Domann E, Chakraborty T, Lochnit G, Meyle J. Porphyromonas gingivalis induced up-regulation of PD-L1 in colon carcinoma cells. Mol Oral Microbiol. 2021;36:172–81.

    Article  CAS  PubMed  Google Scholar 

  5. Groeger S, Jarzina F, Mamat U, Meyle J. Induction of B7–H1 receptor by bacterial cells fractions of Porphyromonas gingivalis on human oral epithelial cells: B7–H1 induction by Porphyromonas gingivalis fractions. Immunobiology. 2017;222:137–47.

    Article  CAS  PubMed  Google Scholar 

  6. Groeger S, Denter F, Lochnit G, Schmitz ML, Meyle J. Porphyromonas gingivalis cell wall components induce Programmed Death Ligand 1 (PD-L1) expression on human oral carcinoma cells by a Receptor-Interacting Protein Kinase 2 (RIP2)-dependent mechanism. Infect Immun. 2020;88:e00051-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Okumura S, Konishi Y, Narukawa M, Sugiura Y, Yoshimoto S, Arai Y, Sato S, Yoshida Y, Tsuji S, Uemura K, Wakita M, Matsudaira T, Matsumoto T, Kawamoto S, Takahashi A, Itatani Y, Miki H, Takamatsu M, Obama K, Takeuchi K, Suematsu M, Ohtani N, Fukunaga Y, Ueno M, Sakai Y, Nagayama S, Hara E. Gut bacteria identified in colorectal cancer patients promote tumourigenesis via butyrate secretion. Nat Commun. 2021;12:5674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol. 2016;27:409–16.

    Article  CAS  PubMed  Google Scholar 

  9. Liu S, Zhou X, Peng X, Li M, Ren B, Cheng G, Cheng L. Porphyromonas gingivalis promotes immunoevasion of oral cancer by protecting cancer from macrophage attack. J Immunol. 2020;205:282–9.

    Article  CAS  PubMed  Google Scholar 

  10. Mu W, Jia Y, Chen X, Li H, Wang Z, Cheng B. Intracellular Porphyromonas gingivalis promotes the proliferation of colorectal cancer cells via the MAPK/ERK signaling pathway. Front Cell Infect Microbiol. 2020;10:584798.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaiko GE, Ryu SH, Koues OI, Collins PL, Solnica-Krezel L, Pearce EJ, Pearce EL, Oltz EM, Stappenbeck TS. The colonic crypt protects stem cells from microbiota-derived metabolites. Cell. 2016;165:1708–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Niederman R, Buyle-Bodin Y, Lu BY, Robinson P, Naleway C. Short-chain carboxylic acid concentration in human gingival crevicular fluid. J Dent Res. 1997;76:575–9.

    Article  CAS  PubMed  Google Scholar 

  13. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, Lakshmanan A, Wade WG. The human oral microbiome. J Bacteriol. 2010;192:5002–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Vitetta L. The role of butyrate in attenuating pathobiont-induced hyperinflammation. Immune Netw. 2020;20:e15.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No external funding was provided for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Vitetta.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest for this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitetta, L. Letter on “Role of gut microbiome in immune regulation and immune checkpoint therapy of colorectal cancer”. Med Oncol 40, 143 (2023). https://doi.org/10.1007/s12032-023-02006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02006-9

Keywords

Navigation