Skip to main content

Advertisement

Log in

Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer immunotherapy is one of the recently developed cancer treatment modalities. When compared with conventional anticancer drug regimens, immunotherapy has shown significantly better outcomes in terms of quality of life and overall survival. It incorporates a wide range of immunomodulatory modalities that channel the effects of the immune system either by broadly modulating the host immune system or by accurately targeting distinct tumor antigens. One such treatment modality that has gained interest is cancer vaccine therapy which acts by developing antibodies against tumor cells. Cancer vaccines target individual peptides or groups of antigens that are released by tumor cells and presented by the APCs. This also initiates an effective process to activate the host immune responses. Studies on various types of cancer vaccines are conducted, out of which only few are approved by FDA for clinical uses. Despite of documented safety and efficacy of conventional chemotherapy and cancer vaccines, individually they did not produce substantial results in eradication of the cancer as a monotherapy. Hence, the combination approach holds the extensive potential to provide significant improvement in disease outcomes. Certain chemotherapy has immunomodulatory effects and is proven to synergize with cancer vaccines thereby enhancing their anti-tumor activities. Chemotherapeutic agents are known to have immunostimulatory mechanisms apart from its cytotoxic effect and intensify the anti-tumor activities of vaccines by various mechanisms. This review highlights various cancer vaccines, their mechanism, and how their activity gets affected by chemotherapeutic agents. It also aims at summarizing the evidence-based outcome of the combination approach of a cancer vaccine with chemotherapy and a brief on future aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

AEs:

: Adverse events

APCs:

: Antigen-presenting cells

ATP:

: Adenosine triphosphate

B7-H3:

: B7 Homolog 3

B7-H4:

: B7 Homolog 4

CBR:

: Clinical Benefit Rate

CD19:

: Cluster of Differentiation 19

CD30:

: Cluster of Differentiation 30

CD40:

: Cluster of differentiation 40

CD70:

: Cluster of Differentiation 70

CD8 + :

: Cluster of differentiation 8

CDKs:

: Cyclin-dependent kinases

CEA:

: Carcinoembryonic antigen

cGMP:

: Guanosine 3',5'-cyclic monophosphate

CRC:

: Colorectal cancer

CT83:

: Cancer/Testis Antigen 83

CTLA-4:

: Cytotoxic T lymphocyte associated protein 4

CY:

: Cyclophosphamide

DAMPs:

: Damage-associated molecular patterns

DCs:

: Dendritic cells

DFRS:

: Distant recurrence-free survival

DFS:

: Disease-free survival

DLTs:

: Dose-limiting toxicities

DNA:

: Deoxyribonucleic acid

EGFR:

: Epidermal growth factor receptor

GI:

: Gastrointestinal

GM-CSF:

: Granulocyte–macrophage colony-stimulating factor

GP100:

: Glycoprotein 100

HCV:

: Hepatitis C virus

HER2:

: Human epidermal growth factor 2

HLA:

: Human leukocyte antigen

HMGB1:

: High mobility group box 1 protein

HPV 16/17:

: Human papillomavirus 16/17

ICD:

: Immunologic cell death

iDFS:

: Invasive disease-free survival

IDO:

: Indoleamine-2,3-dioxygenase

IFN-α:

: Interferons-alpha

IFN-γ:

: Interferon‐gamma

IGF1R:

: Insulin-like growth factor 1 receptor

IMRT:

: Intensity-modulated radiotherapy

IR:

: Immunological response

LAG3:

: Lymphocyte Activation Gene 3

LCK:

: Lymphocyte-specific protein tyrosine kinase

LPA1:

: Lysophosphatidic acid

MAGEA1-40:

: Melanoma-associated antigen

MBC:

: Metastatic Breast Cancer

MDSCs:

: Myeloid-derived suppressor cells

mFOLFOX6:

: Combined chemotherapy including leucovorin calcium (folinic acid), fluorouracil, and oxaliplatin

MHC-II:

: Major histocompatibility complex class II

MTD:

: Maximum tolerated dose

MUC1:

: Mucin 1

NCOA1:

: Nuclear receptor co-activator

NK cells:

: Natural killer cells

NYSEO 1:

: New York oesophageal squamous cell carcinoma

ORR:

: Objective response rate

OS:

: Overall survival

pCR:

: Pathological complete response

PCR:

: Polymerase chain reaction

PD1/PDL1:

: Programmed death ligand- 1

PEP-3:

: Epidermal growth factor receptor variant III (EGRRvIII)- specific peptide

PSA:

: Prostate stimulating antigen

PSA:

: Prostate-specific antigen

RFS:

: Recurrence-free survival

RLRs:

: RIG-I-like Receptors

SBRT:

: Stereotactic Body Radiation

SKILS:

: Skin-test infiltrating lymphocytes

SLP:

: Synthetic long peptide

Sp17:

: Sperm protein 17

STAT1:

: Signal transducer, and activator of transcription 1

STAT3:

: Signal transducer and activator of transcription 3

STINGs:

: Stimulator of Interferon Genes

TAA:

: Tumor-associated antigens

TC-1:

: T -cytotoxic 1

TCR:

: T-cell receptor

TCRA:

: T-cell receptor alpha

TCRD:

: T Cell Receptor Delta Locus

TCRG:

: T-cell Receptor Gamma

TGF-β:

: Transforming growth factor-β

TLRs:

: Toll-like Receptors

TME:

: Tumor microenvironment

TNBC:

: Triple-negative breast cancer

TNF:

: Tumor necrosis factor

Tregs:

: Regulatory T-cells

TRICOM:

: Three human T-cell costimulatory molecules

TTP:

: Time to progression

VSV:

: Vesicular stomatitis virus

WT-1:

: Wilms' tumor suppressor gene1

References

  1. Seyfried TN, Shelton LM. Cancer as a metabolic disease. Nutr Metab. 2010;7(1):1–22. https://doi.org/10.1186/1743-7075-7-7.

    Article  CAS  Google Scholar 

  2. McCormick PJ. Cancer tsunami: emerging trends, economic burden, and perioperative implications. Curr Anesthesiol Rep. 2018;8(4):348–54. https://doi.org/10.1007/s40140-018-0294-1.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Popat K, McQueen K, Feeley TW. The global burden of cancer. Best Pract Res Clin Anaesthesiol. 2013;27(4):399–408. https://doi.org/10.1016/j.bpa.2013.10.010.

    Article  PubMed  Google Scholar 

  4. Cancer [Internet]. World Health Organization. . Available from: https://www.who.int/health-topics/cancer#tab=tab_1.

  5. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

    Article  PubMed  Google Scholar 

  6. INDIA GLOBOCAN-2020: 365 India-fact-sheets: the global cancer observatory, WHO; 2021 [Available from: https://gco.iarc.fr/today/data/factsheets/populations/356-india-fact-sheets.pdf.

  7. Sahoo SS, Verma M, Parija pp. An overview of cancer registration in India: present status and future challenges. Oncol J India. 2018;2(4):86. https://doi.org/10.4103/oji.oji_40_18.

    Article  Google Scholar 

  8. Sivaram S, Majumdar G, Perin D, Nessa A, Broeders M, Lynge E, et al. Population-based cancer screening programmes in low-income and middle-income countries: regional consultation of the International Cancer Screening Network in India. Lancet Oncol. 2018;19(2):e113–22. https://doi.org/10.1016/S1470-2045(18)30003-2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chalkidou K, Marquez P, Dhillon PK, Teerawattananon Y, Anothaisintawee T, Gadelha CAG, et al. Evidence-informed frameworks for cost-effective cancer care and prevention in low, middle, and high-income countries. Lancet Oncol. 2014;15(3):e119–31. https://doi.org/10.1016/S1470-2045(13)70547-3.

    Article  PubMed  Google Scholar 

  10. Takiar R, Nadayil D, Nandakumar A. Projections of number of cancer cases in India (2010–2020) by cancer groups. J Asian Pac J Cancer Prev. 2010;11(4):1045–9.

    PubMed  Google Scholar 

  11. Baxevanis CN, Perez SA, Papamichail M. Combinatorial treatments including vaccines, chemotherapy and monoclonal antibodies for cancer therapy. Cancer Immunol Immunother. 2009;58(3):317–24. https://doi.org/10.1007/s00262-008-0576-4.

    Article  PubMed  Google Scholar 

  12. Kirkwood JM, Butterfield LH, Tarhini AA, Zarour H, Kalinski P, Ferrone S. Immunotherapy of cancer in 2012. CA Cancer J Clin. 2012;62(5):309–35. https://doi.org/10.3322/caac.20132.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Borghaei H, Smith MR, Campbell KS. Immunotherapy of cancer. Eur J Pharmacol. 2009;625(1–3):41–54. https://doi.org/10.1016/j.ejphar.2009.09.067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Corrie PG. Cytotoxic chemotherapy: clinical aspects. J Med. 2008;36(1):24–8. https://doi.org/10.1016/j.mpmed.2011.09.012.

    Article  Google Scholar 

  15. Ventola CL. Cancer immunotherapy, part 1: current strategies and agents. Pharmacy Ther. 2017;42(6):375.

    Google Scholar 

  16. Alatrash G, Jakher H, Stafford PD, Mittendorf EA. Cancer immunotherapies, their safety and toxicity. Expert Opin Drug Saf. 2013;12(5):631–45. https://doi.org/10.1517/14740338.2013.795944.

    Article  CAS  PubMed  Google Scholar 

  17. Forni G. Vaccines for tumor prevention: a pipe dream? J Infect Dev Ctries. 2015;9(06):600–8. https://doi.org/10.3855/jidc.7201.

    Article  CAS  PubMed  Google Scholar 

  18. Olivieri B, Betterle C, Zanoni G. Vaccinations and autoimmune diseases. Vaccines. 2021;9(8):815. https://doi.org/10.3390/vaccines9080815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bereau M. Vaccination and induction of autoimmune diseases. Inflamm Allergy Drug Targets. 2015;14(2):94–8. https://doi.org/10.2174/1871528114666160105113046.

    Article  CAS  PubMed  Google Scholar 

  20. Mocellin S, Mandruzzato S, Bronte V, Lise M, Nitti D. Part I: vaccines for solid tumours. Lancet Oncol. 2004;5(11):681–9. https://doi.org/10.1016/S1470-2045(04)01610-9.

    Article  CAS  PubMed  Google Scholar 

  21. Choudhury A, Mosolits S, Kokhaei P, Hansson L, Palma M, Mellstedt H. Clinical results of vaccine therapy for cancer: learning from history for improving the future. Adv Cancer Res. 2006;95:147–202. https://doi.org/10.1016/S0065-230X(06)95005-2.

    Article  CAS  PubMed  Google Scholar 

  22. Hodge JW, Ardiani A, Farsaci B, Kwilas AR, Gameiro SR. The tipping point for combination therapy: cancer vaccines with radiation, chemotherapy, or targeted small molecule inhibitors. In: Hodge JW, Ardiani A, Farsaci B, Kwilas AR, Gameiro SR, editors. Seminars in oncology. Amsterdam: Elsevier; 2012.

    Google Scholar 

  23. Galluzzi L, Humeau J, Buqué A, Zitvogel L, Kroemer G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol. 2020;17(12):725–41. https://doi.org/10.1038/s41571-020-0413-z.

    Article  PubMed  Google Scholar 

  24. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of anti-cancer chemotherapy. Nat Rev Immunol. 2007. https://doi.org/10.1038/nri2216.

    Article  Google Scholar 

  25. Shurin MR, Naiditch H, Gutkin DW, Umansky V, Shurin GV. ChemoImmunoModulation: immune regulation by the antineoplastic chemotherapeutic agents. Curr Med Chem. 2012;19(12):1792–803. https://doi.org/10.2174/092986712800099785.

    Article  CAS  PubMed  Google Scholar 

  26. Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28(6):690–714. https://doi.org/10.1016/j.ccell.2015.10.012.

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka A, Nishikawa H, Noguchi S, Sugiyama D, Morikawa H, Takeuchi Y, et al. Tyrosine kinase inhibitor imatinib augments tumor immunity by depleting effector regulatory T cells. J Exp Med. 2019;217(2):e20191009. https://doi.org/10.1084/jem.20191009.

    Article  CAS  PubMed Central  Google Scholar 

  28. Rozkova D, Horvath R, Bartunkova J, Spisek R. Glucocorticoids severely impair differentiation and antigen presenting function of dendritic cells despite upregulation of Toll-like receptors. Clin Immunol. 2006;120(3):260–71. https://doi.org/10.1016/j.clim.2006.04.567.

    Article  CAS  PubMed  Google Scholar 

  29. Seiwert TY, Haddad RI, Gupta S, Mehra R, Tahara M, Berger R, et al. Antitumor activity and safety of pembrolizumab in patients (pts) with advanced squamous cell carcinoma of the head and neck (SCCHN): preliminary results from KEYNOTE-012 expansion cohort. Proc Am Soc Clin Oncol. 2015. https://doi.org/10.1200/jco.2015.33.18_suppl.lba6008.

    Article  Google Scholar 

  30. Claude L, Perol D, Ray-Coquard I, Petit T, Blay J-Y, Carrie C, et al. Lymphopenia: a new independent prognostic factor for survival in patients treated with whole brain radiotherapy for brain metastases from breast carcinoma. Radiat Oncol. 2005;76(3):334–9. https://doi.org/10.1016/j.radonc.2005.06.004.

    Article  Google Scholar 

  31. Weiner H, Cohen J. Treatment of multiple sclerosis with cyclophosphamide: critical review of clinical and immunologic effects. Mult Scler. 2002;8(2):142–54. https://doi.org/10.1191/1352458502ms790oa.

    Article  CAS  PubMed  Google Scholar 

  32. Panici PB, Maggioni A, Hacker N, Landoni F, Ackermann S, Campagnutta E, et al. Systematic aortic and pelvic lymphadenectomy versus resection of bulky nodes only in optimally debulked advanced ovarian cancer: a randomized clinical trial. J Natl Cancer Inst. 2005;97(8):560–6. https://doi.org/10.1093/jnci/dji102.

    Article  PubMed  Google Scholar 

  33. Zhang J, Pan S, Jian C, Hao L, Dong J, Sun Q, et al. Immunostimulatory properties of chemotherapy in breast cancer: from immunogenic modulation mechanisms to clinical practice. Front immunol. 2022;12:5711. https://doi.org/10.3389/fimmu.2021.819405.

    Article  CAS  Google Scholar 

  34. Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31(1):51–72. https://doi.org/10.1146/annurev-immunol-032712-100008.

    Article  CAS  PubMed  Google Scholar 

  35. Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, et al. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. OncoImmunology. 2017;6(12):e1386829. https://doi.org/10.1080/2162402X.2017.1386829.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhou J, Wang G, Chen Y, Wang H, Hua Y, Cai Z. Immunogenic cell death in cancer therapy: present and emerging inducers. J Cell Mol Med. 2019;23(8):4854–65. https://doi.org/10.1111/jcmm.14356.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Daniel D, Crawford J. Myelotoxicity from chemotherapy. In: Daniel D, Crawford J, editors. Seminars in oncology. Amsterdam: Elsevier; 2006.

    Google Scholar 

  38. Barreto JN, McCullough KB, Ice LL, Smith JA. Antineoplastic agents and the associated myelosuppressive effects: a review. J Pharm Pract. 2014;27(5):440–6. https://doi.org/10.1177/0897190014546108.

    Article  PubMed  Google Scholar 

  39. Wumkes M, Van Der Velden A, Los M, Leys M, Beeker A, Nijziel M, et al. Serum antibody response to influenza virus vaccination during chemotherapy treatment in adult patients with solid tumours. Vaccine. 2013;31(52):6177–84. https://doi.org/10.1016/j.vaccine.2013.10.053.

    Article  CAS  PubMed  Google Scholar 

  40. Zahid KR, Raza U, Tumbath S, Jiang L, Xu W, Huang X. Neutrophils: musketeers against immunotherapy. Front Oncol. 2022;12:975981. https://doi.org/10.3389/fonc.2022.975981.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yang D, Liu J. Neutrophil extracellular traps: a new player in cancer metastasis and therapeutic target. J Exp Clin Cancer Res: CR. 2021;40(1):233. https://doi.org/10.1186/s13046-021-02013-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA. 2012;109(32):13076–81. https://doi.org/10.1073/pnas.1200419109.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Arelaki S, Arampatzioglou A, Kambas K, Papagoras C, Miltiades P, Angelidou I, et al. Gradient infiltration of neutrophil extracellular traps in colon cancer and evidence for their involvement in tumour growth. PLoS ONE. 2016;11(5):e0154484. https://doi.org/10.1371/journal.pone.0154484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Millrud CR, Kågedal Å, Kumlien Georén S, Winqvist O, Uddman R, Razavi R, et al. NET-producing CD16(high) CD62L(dim) neutrophils migrate to tumor sites and predict improved survival in patients with HNSCC. Int J Cancer. 2017;140(11):2557–67. https://doi.org/10.1002/ijc.30671.

    Article  CAS  PubMed  Google Scholar 

  45. Dees S, Ganesan R, Singh S, Grewal IS. Regulatory T cell targeting in cancer: emerging strategies in immunotherapy. Eur J Immunol. 2021;51(2):280–91. https://doi.org/10.1002/eji.202048992.

    Article  CAS  PubMed  Google Scholar 

  46. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27(1):109–18. https://doi.org/10.1038/cr.2016.151.

    Article  CAS  PubMed  Google Scholar 

  47. Wing JB, Tanaka A, Sakaguchi S. Human FOXP3+ regulatory T cell heterogeneity and function in autoimmunity and cancer. Immunity. 2019;50(2):302–16. https://doi.org/10.1016/j.immuni.2019.01.020.

    Article  CAS  PubMed  Google Scholar 

  48. Wang W-H, Xu H-Y, Zhao Z-M, Zhang G-M, Lin F-W. Dynamic and significant changes of T-cell subgroups in breast cancer patients during surgery and chemotherapy. Int Immunopharmacol. 2018;65:279–83. https://doi.org/10.1016/j.intimp.2018.09.039.

    Article  CAS  PubMed  Google Scholar 

  49. Oshi M, Asaoka M, Tokumaru Y, Angarita FA, Yan L, Matsuyama R, et al. Abundance of regulatory T cell (Treg) as a predictive biomarker for neoadjuvant chemotherapy in triple-negative breast cancer. Cancers. 2020;12(10):3038. https://doi.org/10.3390/cancers12103038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21(8):485–98. https://doi.org/10.1038/s41577-020-00490-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Safarzadeh E, Mohammadi A, Mansoori B, Duijf PH, Hashemzadeh S, Khaze V, et al. STAT3 silencing and TLR7/8 pathway activation repolarize and suppress myeloid-derived suppressor cells from breast cancer patients. Front immunol. 2021;11:613215. https://doi.org/10.3389/fimmu.2020.613215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang H, Houghton AM. Good cops turn bad: the contribution of neutrophils to immune-checkpoint inhibitor treatment failures in cancer. Pharmacol Ther. 2021;217:107662. https://doi.org/10.1016/j.pharmthera.2020.107662.

    Article  CAS  PubMed  Google Scholar 

  53. Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non–small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012;30(17):2046–54. https://doi.org/10.1200/JCO.2011.38.4032.

    Article  CAS  PubMed  Google Scholar 

  54. Reck M, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol. 2013;24(1):75–83. https://doi.org/10.1093/annonc/mds213.

    Article  CAS  PubMed  Google Scholar 

  55. Mattarollo SR, Loi S, Duret H, Ma Y, Zitvogel L, Smyth MJ. Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res. 2011;71(14):4809–20. https://doi.org/10.1158/0008-5472.CAN-11-0753.

    Article  CAS  PubMed  Google Scholar 

  56. Kuczma M, Ding Z-C, Zhou G. Immunostimulatory effects of melphalan and usefulness in adoptive cell therapy with antitumor CD4+ T cells. Crit Rev Immunol. 2016. https://doi.org/10.1615/CritRevImmunol.2016017507.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yang H, Antoine DJ, Andersson U, Tracey KJ. The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol. 2013;93(6):865–73. https://doi.org/10.1189/jlb.1212662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chavez-Dominguez RL, Perez-Medina MA, Lopez-Gonzalez JS, Galicia-Velasco M, Matias-Florentino M, Avila-Rios S, et al. Role of HMGB1 in cisplatin-persistent lung adenocarcinoma cell lines. Front Oncol. 2021;11:750677. https://doi.org/10.3389/fonc.2021.750677.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Martins I, Tesniere A, Kepp O, Michaud M, Schlemmer F, Senovilla L, et al. Chemotherapy induces ATP release from tumor cells. Cell cycle (Georgetown, Tex). 2009;8(22):3723–8. https://doi.org/10.4161/cc.8.22.10026.

    Article  CAS  PubMed  Google Scholar 

  60. Rufo N, Garg AD, Agostinis P. The unfolded protein response in immunogenic cell death and cancer immunotherapy. Trends cancer. 2017;3(9):643–58. https://doi.org/10.1016/j.trecan.2017.07.002.

    Article  CAS  PubMed  Google Scholar 

  61. Hao Y-B, Yi S-Y, Ruan J, Zhao L, Nan K-J. New insights into metronomic chemotherapy-induced immunoregulation. Cancer Lett. 2014;354(2):220–6. https://doi.org/10.1016/j.canlet.2014.08.028.

    Article  CAS  PubMed  Google Scholar 

  62. Maiti R. Metronomic chemotherapy. J Pharmacol Pharmacother. 2014;5(3):186–92. https://doi.org/10.4103/0976-500X.136098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cazzaniga ME, Cordani N, Capici S, Cogliati V, Riva F, Cerrito MG. Metronomic chemotherapy. Cancers. 2021;13(9):2236. https://doi.org/10.3390/cancers13092236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weinmann H. Cancer immunotherapy: selected targets and small-molecule modulators. ChemMedChem. 2016;11(5):450–66. https://doi.org/10.1002/cmdc.201500566.

    Article  CAS  PubMed  Google Scholar 

  65. Burugu S, Dancsok AR, Nielsen TO. Emerging targets in cancer immunotherapy. In: Burugu S, Dancsok AR, Nielsen TO, editors. Seminars in cancer biology. Amsterdam: Elsevier; 2018.

    Google Scholar 

  66. Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov. 2015;14(8):561–84. https://doi.org/10.1038/nrd4591.

    Article  CAS  PubMed  Google Scholar 

  67. Wang F, Wang S, Zhou Q. The resistance mechanisms of lung cancer immunotherapy. Front Oncol. 2020;10:568059. https://doi.org/10.3389/fonc.2020.568059.

    Article  PubMed  PubMed Central  Google Scholar 

  68. West H, McCleod M, Hussein M, Morabito A, Rittmeyer A, Conter HJ, et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019;20(7):924–37. https://doi.org/10.1016/S1470-2045(19)30167-6.

    Article  CAS  PubMed  Google Scholar 

  69. Gandhi L, Rodríguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non–small-cell lung cancer. N Engl J Med. 2018;378(22):2078–92. https://doi.org/10.1056/NEJMoa1801005.

    Article  CAS  PubMed  Google Scholar 

  70. Horn L, Mansfield AS, Szczęsna A, Havel L, Krzakowski M, Hochmair MJ, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379(23):2220–9. https://doi.org/10.1056/NEJMoa1809064.

    Article  CAS  PubMed  Google Scholar 

  71. Emens LA, Middleton G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res. 2015;3(5):436–43. https://doi.org/10.1158/2326-6066.CIR-15-0064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chen G, Emens LA. Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol Immunother. 2013;62(2):203–16. https://doi.org/10.1007/s00262-012-1388-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tang K, Wu Y-H, Song Y, Yu B. Indoleamine 2, 3-dioxygenase 1 (IDO1) inhibitors in clinical trials for cancer immunotherapy. J Hematol Oncol. 2021;14(1):1–21. https://doi.org/10.1186/s13045-021-01080-8.

    Article  CAS  Google Scholar 

  74. Li K, Qu S, Chen X, Wu Q, Shi M. Promising targets for cancer immunotherapy: TLRs, RLRs, and STING-mediated innate immune pathways. Int J Mol Sci. 2017;18(2):404. https://doi.org/10.3390/ijms18020404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yu L-Y, Tang J, Zhang C-M, Zeng W-J, Yan H, Li M-P, et al. New immunotherapy strategies in breast cancer. Int J Environ Res Public Health. 2017;14(1):68. https://doi.org/10.3390/ijerph14010068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schlom J, Hodge JW, Palena C, Tsang K-Y, Jochems C, Greiner JW, et al. Therapeutic cancer vaccines. Adv Cancer Res. 2014;121:67–124. https://doi.org/10.1016/B978-0-12-800249-0.00002-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Roselli M, Cereda V, di Bari MG, Formica V, Spila A, Jochems C, et al. Effects of conventional therapeutic interventions on the number and function of regulatory T cells. Oncoimmunology. 2013;2(10):e27025. https://doi.org/10.4161/onci.27025.

    Article  PubMed  PubMed Central  Google Scholar 

  78. DeMaria PJ, Bilusic M. Cancer vaccines. Hematol Oncol Clin. 2019;33(2):199–214. https://doi.org/10.1016/j.hoc.2018.12.001.

    Article  Google Scholar 

  79. Zhao R, Lai X. Evolutionary analysis of replicator dynamics about anti-cancer combination therapy. Math Biosci Eng. 2023;20(1):656–82. https://doi.org/10.3934/mbe.2023030.

    Article  PubMed  Google Scholar 

  80. Dijkgraaf EM, Santegoets SJ, Reyners AK, Goedemans R, Nijman HW, van Poelgeest MI, et al. A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget. 2015;6(31):32228. https://doi.org/10.18632/oncotarget.4772.

    Article  PubMed  PubMed Central  Google Scholar 

  81. TP53 gene tumor protein p53 [Available from: https://medlineplus.gov/genetics/gene/tp53/#:~:text=By%20stopping%20cells%20with%20mutated,%22guardian%20of%20the%20genome.%22.

  82. Harrop R, Chu F, Gabrail N, Srinivas S, Blount D, Ferrari A. Vaccination of castration-resistant prostate cancer patients with TroVax (MVA–5T4) in combination with docetaxel: a randomized phase II trial. Cancer Immunol Immunother. 2013;62(9):1511–20. https://doi.org/10.1007/s00262-013-1457-z.

    Article  CAS  PubMed  Google Scholar 

  83. Quoix E, Lena H, Losonczy G, Forget F, Chouaid C, Papai Z, et al. TG4010 immunotherapy and first-line chemotherapy for advanced non-small-cell lung cancer (TIME): results from the phase 2b part of a randomised, double-blind, placebo-controlled, phase 2b/3 trial. Lancet Oncol. 2016;17(2):212–23. https://doi.org/10.1016/S1470-2045(15)00483-0.

    Article  CAS  PubMed  Google Scholar 

  84. Zheng H, Li M, Wu L, Liu W, Liu Y, Gao J, et al. Progress in the application of hydrogels in immunotherapy of gastrointestinal tumors. Drug Deliv. 2023;30(1):2161670. https://doi.org/10.1080/10717544.2022.2161670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Welters MJ, van der Sluis TC, van Meir H, Loof NM, van Ham VJ, van Duikeren S, et al. Vaccination during myeloid cell depletion by cancer chemotherapy fosters robust T cell responses. Sci Transl Med. 2016;8(334):334ra52-ra52. https://doi.org/10.1126/scitranslmed.aad8307.

    Article  CAS  PubMed  Google Scholar 

  86. Arlen PM, Madan RA, Hodge JW, Schlom J, Gulley JL. Combining vaccines with conventional therapies for cancer. Update on cancer therapeutics. 2007;2(1):33–9. https://doi.org/10.1016/j.uct.2007.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Drug Interaction Checker-Medscape [Available from: https://reference.medscape.com/drug-interactionchecker.

  88. Wang ZX, Cao JX, Liu ZP, Cui YX, Li CY, Li D, et al. Combination of chemotherapy and immunotherapy for colon cancer in China: a meta-analysis. World J Gastroenterol. 2014;20(4):1095–06. https://doi.org/10.3748/wjg.v20.i4.1095.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gameiro SR, Caballero JA, Higgins JP, Apelian D, Hodge JW. Exploitation of differential homeostatic proliferation of T-cell subsets following chemotherapy to enhance the efficacy of vaccine-mediated antitumor responses. Cancer Immunol Immunother. 2011;60(9):1227–42. https://doi.org/10.1007/s00262-011-1020-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Julien S, Picco G, Sewell R, Vercoutter-Edouart A, Tarp M, Miles D, et al. Sialyl-Tn vaccine induces antibody-mediated tumour protection in a relevant murine model. Br J Cancer. 2009;100(11):1746–54. https://doi.org/10.1038/sj.bjc.6605083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Garnett CT, Schlom J, Hodge JW. Combination of docetaxel and recombinant vaccine enhances T-cell responses and antitumor activity: effects of docetaxel on immune enhancement. Clin Cancer Res. 2008;14(11):3536–44. https://doi.org/10.1158/1078-0432.CCR-07-4025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chu Y, Wang L-X, Yang G, Ross HJ, Urba WJ, Prell R, et al. Efficacy of GM-CSF-producing tumor vaccine after docetaxel chemotherapy in mice bearing established Lewis lung carcinoma. J Immunother. 2006;29(4):367–80. https://doi.org/10.1097/01.cji.0000199198.43587.ba.

    Article  CAS  PubMed  Google Scholar 

  93. Eralp Y, Wang X, Wang J-P, Maughan MF, Polo JM, Lachman LB. Doxorubicin and paclitaxel enhance the antitumor efficacy of vaccines directed against HER 2/neuin a murine mammary carcinoma model. Breast Cancer Res. 2004;6(4):1–9. https://doi.org/10.1186/bcr787.

    Article  Google Scholar 

  94. Navashenaq JG, Zamani P, Nikpoor AR, Tavakkol-Afshari J, Jaafari MR. Doxil chemotherapy plus liposomal P5 immunotherapy decreased myeloid-derived suppressor cells in murine model of breast cancer. Nanomedicine. 2020;24:102150. https://doi.org/10.1016/j.nano.2020.102150.

    Article  CAS  PubMed  Google Scholar 

  95. Xia Q, Geng F, Zhang F-F, Liu C-L, Xu P, Lu Z-Z, et al. Cyclophosphamide enhances anti-tumor effects of a fibroblast activation protein α-based DNA vaccine in tumor-bearing mice with murine breast carcinoma. Immunopharmacol Immunotoxicol. 2017;39(1):37–44. https://doi.org/10.1080/08923973.2016.1269337.

    Article  CAS  PubMed  Google Scholar 

  96. Danishmalik SN, Sin J-I. Therapeutic tumor control of HER2 DNA vaccines is achieved by an alteration of tumor cells and tumor microenvironment by gemcitabine and anti-Gr-1 Ab treatment in a HER2-expressing tumor model. DNA Cell Biol. 2017;36(9):801–11. https://doi.org/10.1089/dna.2017.3810.

    Article  CAS  PubMed  Google Scholar 

  97. Donninger H, Li C, Eaton JW, Yaddanapudi K. Cancer vaccines: promising therapeutics or an unattainable dream. Vaccines. 2021;9(6):668. https://doi.org/10.3390/vaccines9060668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lai X, Friedman A. Combination therapy of cancer with cancer vaccine and immune checkpoint inhibitors: a mathematical model. PLoS ONE. 2017;12(5):e0178479. https://doi.org/10.1371/journal.pone.0178479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Finn OJ. Vaccines for cancer prevention: a practical and feasible approach to the cancer epidemic. Cancer Immunol Res. 2014;2(8):708–13. https://doi.org/10.1158/2326-6066.CIR-14-0110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Finn OJ. The dawn of vaccines for cancer prevention. Nat Rev Immunol. 2018;18(3):183–94. https://doi.org/10.1038/nri.2017.140.

    Article  CAS  PubMed  Google Scholar 

  101. Sadeghzadeh M, Bornehdeli S, Mohahammadrezakhani H, Abolghasemi M, Poursaei E, Asadi M, et al. Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci. 2020;254:117580. https://doi.org/10.1016/j.lfs.2020.117580.

    Article  CAS  PubMed  Google Scholar 

  102. Tacken PJ, Figdor CG. Targeted antigen delivery and activation of dendritic cells in vivo: Steps towards cost effective vaccines. Semin Immunol. 2011;23(1):12–20. https://doi.org/10.1016/j.smim.2011.01.001.

    Article  CAS  PubMed  Google Scholar 

  103. Cawood R, Hills T, Wong SL, Alamoudi AA, Beadle S, Fisher KD, et al. Recombinant viral vaccines for cancer. Trends Mol Med. 2012;18(9):564–74. https://doi.org/10.1016/j.molmed.2012.07.007.

    Article  CAS  PubMed  Google Scholar 

  104. Larocca C, Schlom J. Viral vector–based therapeutic cancer vaccines. J Cancer. 2011;17(5):359. https://doi.org/10.1097/PPO.0b013e3182325e63.

    Article  CAS  Google Scholar 

  105. Tornesello AL, Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Nanoparticles to improve the efficacy of peptide-based cancer vaccines. Cancers [Internet]. 2020;12(4):1049.

    Article  CAS  PubMed  Google Scholar 

  106. Reche P, Flower DR, Fridkis-Hareli M, Hoshino Y. Peptide-based immunotherapeutics and vaccines 2017. J Immunol Res. 2018. https://doi.org/10.1155/2018/4568239.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Kumai T, Kobayashi H, Harabuchi Y, Celis E. Peptide vaccines in cancer—old concept revisited. Curr Opin Immunol. 2017;45:1–7. https://doi.org/10.1016/j.coi.2016.11.001.

    Article  CAS  PubMed  Google Scholar 

  108. Fioretti D, Iurescia S, Fazio VM, Rinaldi M. DNA vaccines: developing new strategies against cancer. J Biotechnol Biomed. 2010. https://doi.org/10.1155/2010/174378.

    Article  Google Scholar 

  109. Soltani S, Farahani A, Dastranj M, Momenifar N, Mohajeri P, Emamie AD. DNA vaccine: methods and mechanisms. Adv hum biol. 2018;8(3):132. https://doi.org/10.4103/AIHB.AIHB_74_17.

    Article  Google Scholar 

  110. Liu J, Fu M, Wang M, Wan D, Wei Y, Wei X. Cancer vaccines as promising immuno-therapeutics: platforms and current progress. J Hematol Oncol. 2022;15(1):1–26. https://doi.org/10.1186/s13045-022-01247-x.

    Article  Google Scholar 

  111. Hasson SSAA, Al-Busaidi JKZ, Sallam TA. The past, current and future trends in DNA vaccine immunisations. Asian Pac J Trop Biomed. 2015;5(5):344–53. https://doi.org/10.1016/S2221-1691(15)30366-X.

    Article  CAS  Google Scholar 

  112. Keenan BP, Jaffee EM. Whole cell vaccines—past progress and future strategies. In: Keenan BP, Jaffee EM, editors. Seminars in oncology. Amsterdam: Elsevier; 2012.

    Google Scholar 

  113. Koido S. Dendritic-tumor fusion cell-based cancer vaccines. Int J Mol Sci. 2016;17(6):828.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Kunjachan S, Ehling J, Storm G, Kiessling F, Lammers T. Noninvasive imaging of nanomedicines and nanotheranostics: principles, progress, and prospects. Chem Rev. 2015;115(19):10907–37. https://doi.org/10.1021/cr500314d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Olusanya TOB, Haj Ahmad RR, Ibegbu DM, Smith JR, Elkordy AA. Liposomal drug delivery systems and anticancer drugs (Basel, Switzerland). Molecules. 2018. https://doi.org/10.3390/molecules23040907.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Maswadeh H. Glycosphingolipids (GSLs) from Sphingomonas paucimobilis Increase the efficacy of liposome-based nanovaccine against Acinetobacter baumannii-associated pneumonia in immunocompetent and immunocompromised mice. Molecules (Basel, Switzerland). 2022;27:7790. https://doi.org/10.3390/molecules27227790.

    Article  CAS  PubMed  Google Scholar 

  117. Sharma VK, Agrawal MK. A historical perspective of liposomes-a bio nanomaterial. Mater Today: Proc. 2021;45:2963–6. https://doi.org/10.1016/j.matpr.2020.11.952.

    Article  CAS  Google Scholar 

  118. Butterfield LH. Cancer vaccines. BMJ. 2015. https://doi.org/10.1136/bmj.h988.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Gordon B, Gadi VK. The role of the tumor microenvironment in developing successful therapeutic and secondary prophylactic breast cancer vaccines. Vaccines. 2020;8(3):529. https://doi.org/10.3390/vaccines8030529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Arneth B. Tumor microenvironment. Medicina. 2020;56(1):15.

    Article  Google Scholar 

  121. Hargadon KMJC, Medicine T. Tumor microenvironmental influences on dendritic cell and T cell function: a focus on clinically relevant immunologic and metabolic checkpoints. CLIN TRANSL MED. 2020;10(1):374–411. https://doi.org/10.1002/ctm2.37.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Yan H-X, Cheng P, Wei H-Y, Shen G-B, Fu L-X, Ni J, et al. Active immunotherapy for mouse breast cancer with irradiated whole-cell vaccine expressing VEGFR2. Oncol Rep. 2013;29(4):1510–6. https://doi.org/10.3892/or.2013.2282.

    Article  CAS  PubMed  Google Scholar 

  123. Jin D, Yu X, Chen B, Li Z, Ding J, Zhao X, et al. Combined immunotherapy of breast cancer with EGF and VEGF vaccines from DNA shuffling in a mouse model. Immunotherapy. 2017;9(7):537–53. https://doi.org/10.2217/imt-2017-0004.

    Article  CAS  PubMed  Google Scholar 

  124. Zhang H, Jia E, Xia W, Lv T, Lu C, Xu Z, et al. Utilizing VEGF165b mutant as an effective immunization adjunct to augment antitumor immune response. Vaccines. 2019;37(15):2090–8. https://doi.org/10.1016/j.vaccine.2019.02.055.

    Article  CAS  Google Scholar 

  125. Koske I, Rössler A, Pipperger L, Petersson M, Barnstorf I, Kimpel J, et al. Oncolytic virotherapy enhances the efficacy of a cancer vaccine by modulating the tumor microenvironment. Int J Cancer. 2019;145(7):1958–69. https://doi.org/10.1002/ijc.32325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wang B, Tian T, Kalland K-H, Ke X, Qu Y. Targeting Wnt/β-catenin signaling for cancer immunotherapy. Trends Pharmacol Sci. 2018;39(7):648–58. https://doi.org/10.1016/j.tips.2018.03.008.

    Article  CAS  PubMed  Google Scholar 

  127. Chong G, Morse M. Combining cancer vaccines with chemotherapy. Expert Opin Pharmacother. 2005;6(16):2813–20. https://doi.org/10.1080/17460441.2020.1811673.

    Article  CAS  PubMed  Google Scholar 

  128. Beyranvand Nejad E, Welters MJ, Arens R, van der Burg SH. The importance of correctly timing cancer immunotherapy. Expert Opin Biol Ther. 2017;17(1):87–103. https://doi.org/10.1080/14712598.2017.1256388.

    Article  CAS  PubMed  Google Scholar 

  129. Schlom J, Arlen PM, Gulley JL. Cancer vaccines: moving beyond current paradigms. Clin Cancer Res. 2007;13(13):3776–82. https://doi.org/10.1158/1078-0432.CCR-07-0588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Fridman WH, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306. https://doi.org/10.1038/nrc3245.

    Article  CAS  PubMed  Google Scholar 

  131. Vacchelli E, Aranda F, Eggermont A, Galon J, Sautès-Fridman C, Cremer I, et al. Trial Watch: chemotherapy with immunogenic cell death inducers. Oncoimmunology. 2014;3(3):e27878. https://doi.org/10.4161/onci.27878.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, et al. CD4+ CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004;34(2):336–44. https://doi.org/10.1002/eji.200324181.

    Article  CAS  PubMed  Google Scholar 

  133. Banissi C, Ghiringhelli F, Chen L, Carpentier AF. Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother. 2009;58(10):1627–34. https://doi.org/10.1007/s00262-009-0671-1.

    Article  CAS  PubMed  Google Scholar 

  134. Litterman AJ, Dudek AZ, Largaespada DA. Alkylating chemotherapy may exert a uniquely deleterious effect upon neo-antigen-targeting anticancer vaccination. Oncoimmunology. 2013;2(10):e26294. https://doi.org/10.4161/onci.26294.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P, Williams N, et al. Combination of p53 cancer vaccine with chemotherapy in patients with extensive stage small cell lung cancer. Clin Cancer Investig J. 2006;12(3):878–87. https://doi.org/10.1158/1078-0432.CCR-05-2013.

    Article  CAS  Google Scholar 

  136. Chemotherapy Followed By Vaccine Therapy in Treating Patients With Extensive-Stage Small Cell Lung Cancer [Available from: https://clinicaltrials.gov/ct2/show/record/NCT00049218?term=p53+Cancer+Vaccine+with+Chemotherapy&cond=Extensive+Stage+Small+Cell+Lung+Cancer&draw=2&rank=1.

  137. Wu X, Feng Q-M, Wang Y, Shi J, Ge H-L, Di W. The immunologic aspects in advanced ovarian cancer patients treated with paclitaxel and carboplatin chemotherapy. Cancer Immunol Immunother. 2010;59(2):279–91. https://doi.org/10.1007/s00262-009-0749-9.

    Article  CAS  PubMed  Google Scholar 

  138. Murahashi M, Hijikata Y, Yamada K, Tanaka Y, Kishimoto J, Inoue H, et al. Phase I clinical trial of a five-peptide cancer vaccine combined with cyclophosphamide in advanced solid tumors. Clin Immunol. 2016;166:48–58. https://doi.org/10.1016/j.clim.2016.03.015.

    Article  CAS  PubMed  Google Scholar 

  139. Farsaci B, Higgins JP, Hodge JW. Consequence of dose scheduling of sunitinib on host immune response elements and vaccine combination therapy. Int J Cancer. 2012;130(8):1948–59. https://doi.org/10.1002/ijc.26219.

    Article  CAS  PubMed  Google Scholar 

  140. Ramakrishnan R, Antonia S, Gabrilovich DI. Combined modality immunotherapy and chemotherapy: a new perspective. Cancer Immunol Immunother. 2008;57(10):1523–9. https://doi.org/10.1007/s00262-008-0531-4.

    Article  CAS  PubMed  Google Scholar 

  141. Chemo-immunotherapy (Gemcitabine, Interferon-alpha 2b and p53 SLP) in Patients With Platinum-resistant Ovarian Cancer (CHIP) [Available from: https://clinicaltrials.gov/ct2/show/NCT01639885?term=gemcitabine%2C+Pegintron+and+p53+SLP+vaccine&cond=Platinum-resistant+Ovarian+Cancer&draw=2&rank=1.

  142. Yang F, Shi K, Hao Y, Jia Y, Liu Q, Chen Y, et al. Cyclophosphamide loaded thermo-responsive hydrogel system synergize with a hydrogel cancer vaccine to amplify cancer immunotherapy in a prime-boost manner. Bioact Mater. 2021;6(10):3036–48. https://doi.org/10.1016/j.bioactmat.2021.03.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Berinstein NL, Karkada M, Oza AM, Odunsi K, Villella JA, Nemunaitis JJ, et al. Survivin-targeted immunotherapy drives robust polyfunctional T cell generation and differentiation in advanced ovarian cancer patients. Oncoimmunology. 2015;4(8):e1026529. https://doi.org/10.1080/2162402X.2015.1026529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gibney GT, Kudchadkar RR, DeConti RC, Thebeau MS, Czupryn MP, Tetteh L, et al. Safety, Correlative markers, and clinical results of adjuvant Nivolumab in combination with vaccine in resected high-risk metastatic Melanomaadjuvant anti–PD-1 therapy in resected melanoma patients. Clin Cancer Res. 2015;21(4):712–20. https://doi.org/10.1158/1078-0432.CCR-14-2468.

    Article  CAS  PubMed  Google Scholar 

  145. Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Arra C, Maiolino P, et al. Novel metronomic chemotherapy and cancer vaccine combinatorial strategy for hepatocellular carcinoma in a mouse model. Cancer Immunol Immunother. 2015;64(10):1305–14. https://doi.org/10.1007/s00262-015-1698-0.

    Article  CAS  PubMed  Google Scholar 

  146. van der Sluis TC, van Duikeren S, Huppelschoten S, Jordanova ES, Beyranvand Nejad E, Sloots A, et al. Vaccine-induced tumor necrosis factor-producing T cells synergize with cisplatin to promote tumor cell deathsynergy between T cell-produced cytokines and cisplatin. Clin Cancer Res. 2015;21(4):781–94. https://doi.org/10.1158/1078-0432.CCR-14-2142.

    Article  CAS  PubMed  Google Scholar 

  147. Phase II Trial of Combination Immunotherapy With NeuVax and Trastuzumab in High-risk HER2+ Breast Cancer Patients (HER3+) [Available from: https://clinicaltrials.gov/ct2/show/study/NCT02297698?term=vaccination+in+combination+with+chemotherapy&recrs=e&cond=Cancer&phase=123&draw=2&rank=7.

  148. Campf J, Clifton GT, Hale DF, Vreeland TJ, Hickerson A, Holmes JP, et al. Immunologic responses in triple-negative breast cancer patients in a randomized phase IIb trial of nelipepimut-S plus trastuzumab versus trastuzumab alone to prevent recurrence. Am Soc Clin Oncol. 2019. https://doi.org/10.1200/JCO.2019.37.15_suppl.556.

    Article  Google Scholar 

  149. Combination Immunotherapy With Herceptin and the HER2 Vaccine NeuVax [Available from: https://clinicaltrials.gov/ct2/show/study/NCT01570036?term=vaccination+in+combination+with+chemotherapy&recrs=e&cond=Cancer&phase=123&draw=2&rank=8.

  150. Clifton GT, Hale D, Vreeland TJ, Hickerson AT, Litton JK, Alatrash G, et al. Results of a randomized Phase IIb trial of Nelipepimut-S+ Trastuzumab versus Trastuzumab to prevent recurrences in patients with high-risk HER2 low-expressing breast cancer. Clin Cancer Res. 2020;26(11):2515–23. https://doi.org/10.1158/1078-0432.CCR-19-2741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Platin-based Chemotherapeutics to Enhance Dendritic Cell Vaccine Efficacy in Melanoma Patients [Available from: https://clinicaltrials.gov/ct2/show/record/NCT02285413?term=vaccination+in+combination+with+chemotherapy&recrs=e&cond=Cancer&phase=123&draw=2&rank=20.

  152. Boudewijns S, Bloemendal M, de Haas N, Westdorp H, Bol KF, Schreibelt G, et al. Autologous monocyte-derived DC vaccination combined with cisplatin in stage III and IV melanoma patients: a prospective, randomized phase 2 trial. Cancer Immunol Immunother. 2020;69(3):477–88. https://doi.org/10.1007/s00262-019-02466-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Docetaxel Alone or in Combination With Vaccine to Treat Breast Cancer [Available from: https://clinicaltrials.gov/ct2/show/record/NCT00179309?term=vaccination+in+combination+with+chemotherapy&recrs=e&cond=Cancer&phase=123&draw=2&rank=10.

  154. Heery CR, Ibrahim NK, Arlen PM, Mohebtash M, Murray JL, Koenig K, et al. Docetaxel alone or in combination with a therapeutic cancer vaccine (PANVAC) in patients with metastatic breast cancer: a randomized clinical trial. JAMA Oncol. 2015;1(8):1087–95. https://doi.org/10.1001/jamaoncol.2015.2736.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Vaccine Therapy With or Without Cyclophosphamide in Treating Patients Undergoing Chemotherapy and Radiation Therapy for Stage I or Stage II Pancreatic Cancer That Can Be Removed by Surgery [Available from: https://clinicaltrials.gov/ct2/show/results/NCT00727441?term=vaccination+in+combination+with+chemotherapy&recrs=e&cond=Cancer&phase=123&draw=2&rank=6.

  156. Bloch O. Immunotherapy for malignant gliomas Current Understanding Treatment of Gliomas. Cham: Springer; 2015. p. 143–58.

    Book  Google Scholar 

  157. Vaccine Therapy in Treating Patients With Newly Diagnosed Glioblastoma Multiforme (ACTIVATe) [Available from: https://clinicaltrials.gov/ct2/show/record/NCT00643097?term=vaccination+in+combination+with+chemotherapy&recrs=e&cond=Cancer&phase=123&draw=2&rank=17.

  158. Vogelzang NJ, Beer TM, Gerritsen W, Oudard S, Wiechno P, Kukielka-Budny B, et al. Efficacy and Safety of autologous dendritic cell-based immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer: the VIABLE phase 3 randomized clinical trial. JAMA Oncol. 2022;8(4):546–52. https://doi.org/10.1001/jamaoncol.2021.7298.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Phase III Study of DCVAC/PCa Added to Standard Chemotherapy for Men With Metastatic Castration Resistant Prostate Cancer [Available from: https://clinicaltrials.gov/ct2/show/record/NCT02111577?term=combination+of+chemotherapy+and+cancer+vaccine+therapy&recrs=e&cond=Cancer&phase=23&draw=2&rank=5.

  160. Vaccine Therapy, Cyclophosphamide, and Cetuximab in Treating Patients With Metastatic or Locally Advanced Pancreatic Cancer [Available from: https://clinicaltrials.gov/ct2/show/NCT00305760?term=combining+chemotherapy+and+cancer+vaccine+therapy&recrs=e&cond=Cancer&phase=123&draw=2&rank=9.

  161. A Trial of Perioperative CV301 Vaccination in Combination With Nivolumab and Systemic Chemotherapy for Metastatic CRC [Available from: https://clinicaltrials.gov/ct2/show/record/NCT03547999?term=vaccination+in+combination+with+chemotherapy&recrs=adf&cond=Cancer&phase=123&draw=2&rank=1&view=record.

  162. Autologous Dendritic Cell Vaccination in Mesothelioma (MESODEC) [Available from: https://clinicaltrials.gov/ct2/show/record/NCT02649829?term=vaccination+in+combination+with+chemotherapy&recrs=adf&cond=Cancer&phase=123&draw=2&rank=5&view=record.

  163. Adjuvant Dendritic Cell-immunotherapy Plus Temozolomide in Glioblastoma Patients (ADDIR-GLIO) [Available from: https://clinicaltrials.gov/ct2/show/record/NCT02649582?term=vaccination+in+combination+with+chemotherapy&recrs=adf&cond=Cancer&phase=123&draw=2&rank=22&view=record.

  164. Concurrent WOKVAC Vaccination, Chemotherapy, and HER2-Targeted Monoclonal Antibody Therapy Before Surgery for the Treatment of Patients With Breast Cancer [Available from: https://clinicaltrials.gov/ct2/show/study/NCT04329065?term=vaccination+in+combination+with+chemotherapy&recrs=adf&cond=Cancer&phase=123&draw=2&rank=2.

  165. Vaccination of Triple Negative Breast Cancer Patients [Available from: https://clinicaltrials.gov/ct2/show/study/NCT02229084?term=vaccination+in+combination+with+chemotherapy&recrs=adf&cond=Cancer&phase=123&draw=2&rank=4.

  166. GVAX Pancreas Vaccine (With CY) in Combination With Nivolumab and SBRT for Patients With Borderline Resectable Pancreatic Cancer [Available from: https://clinicaltrials.gov/ct2/show/record/NCT03161379?term=vaccination+in+combination+with+chemotherapy&recrs=adf&cond=Cancer&phase=123&draw=2&rank=9.

  167. Therapeutic Cancer Vaccine (AST-301, pNGVL3-hICD) in Patients With Breast Cancer [Available from: https://clinicaltrials.gov/ct2/show/study/NCT05163223?term=vaccination+in+combination+with+chemotherapy&recrs=adf&cond=Cancer&phase=123&draw=2&rank=12.

  168. HPV-16 Vaccination and Pembrolizumab Plus Cisplatin for “Intermediate Risk” HPV-16-associated Head and Neck Squamous Cell Carcinoma [Available from: https://clinicaltrials.gov/ct2/show/record/NCT04369937?term=vaccination+in+combination+with+chemotherapy&recrs=adf&cond=Cancer&phase=123&draw=2&rank=21.

  169. Tagliamonte M, Petrizzo A, Mauriello A, Tornesello ML, Buonaguro FM, Buonaguro L. Potentiating cancer vaccine efficacy in liver cancer. Oncoimmunology. 2018;7(10):e1488564. https://doi.org/10.1080/2162402X.2018.1488564.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Luo Q, Zhang L, Luo C, Jiang M. Emerging strategies in cancer therapy combining chemotherapy with immunotherapy. Cancer Lett. 2019;454:191–203. https://doi.org/10.1016/j.canlet.2019.04.017.

    Article  CAS  PubMed  Google Scholar 

  171. Cancer Vaccines: Types, Schedule and Limitations [Available from: https://onco.com/blog/cancer-vaccines-types-schedule-and-limitations/#:~:text=People%20with%20a%20weak%20immune,hamper%20its%20ability%20to%20respond.

  172. Conforti A, Salvatori E, Lione L, Compagnone M, Pinto E, Shorrock C, et al. Linear DNA amplicons as a novel cancer vaccine strategy. J Exp Clin Cancer Res. 2022;41(1):1–13. https://doi.org/10.1186/s13046-022-02402-5.

    Article  CAS  Google Scholar 

  173. Tsiatas M, Mountzios G, Curigliano G. Future perspectives in cancer immunotherapy. Ann Transl Med. 2016;4(14):273. https://doi.org/10.21037/atm.2016.07.14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. Gaurang B. Shah, Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India for kind support and guidance in manuscript preparation. The authors also extend their appreciation to L. M. College of Pharmacy, Ahmedabad, India for providing continuous library resources support throughout literature survey and data collection.

Funding

The authors declare that no funds, grants, or other support have been received during or for the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

NK, HP, AP, AS, YS—Manuscript first draft preparation and subsequent editing, Literature and data survey, Figures and diagram conception and designing. MRC—Review topic conception, Design of content and skeleton, Manuscript draft review and editing; Figures and Tables conception, Designing and Editing.

Corresponding author

Correspondence to Mehul R. Chorawala.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest to report.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kothari, N., Postwala, H., Pandya, A. et al. Establishing the applicability of cancer vaccines in combination with chemotherapeutic entities: current aspect and achievable prospects. Med Oncol 40, 135 (2023). https://doi.org/10.1007/s12032-023-02003-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-02003-y

Keywords

Navigation