Skip to main content

Advertisement

Log in

Phospho PTEN mediated dephosphorylation of mitotic kinase PLK1 and Aurora Kinase A prevents aneuploidy and preserves genomic stability

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

PTEN, dual phosphatase tumor suppressor protein, is found to be frequently mutated in various cancers. Post-translational modification of PTEN is important for its sub-cellular localization and catalytic functions. But how these modifications affect cytological damage and aneuploidy is not studied in detail. We focus on the role of phosphatase activity along with C-terminal phosphorylation of PTEN in perspective of cytological damage like micronucleus, nuclear bud, and nuclear bridge formation. Our data suggest that wild-type PTEN, but not phospho-mutant PTEN significantly reduces cytological damage in PTEN null PC3 cells. In case of phosphatase-dead PTEN, cytological damage markers are increased during 24 h recovery after DNA damage. When we use phosphorylation and phosphatase-dead dual mutant PTEN, the extent of different cytological DNA damage parameters are similar to phosphatase-dead PTEN. We also find that both of those activities are essential for maintaining chromosome numbers. PTEN null cells exhibit significantly aberrant γ-tubulin pole formation during metaphase. Interestingly, we observed that p-PTEN localized to spindle poles along with PLK1 and Aurora Kinase A. Further depletion of phosphorylation and phosphatase activity of PTEN increases the expression of p-Aurora Kinase A (T288) and p-PLK1 (T210), compared to cells expressing wild-type PTEN. Again, wild-type PTEN but not phosphorylation-dead mutant is able to physically interact with PLK1 and Aurora Kinase A. Thus, our study suggests that the phosphorylation-dependent interaction of PTEN with PLK1 and Aurora Kinase A causes dephosphorylation of those mitotic kinases and by lowering their hyperphosphorylation status, PTEN prevents aberrant chromosome segregation in metaphase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science. 1997;275(5308):1943–7. https://doi.org/10.1126/science.275.5308.1943. (PMID: 9072974).

    Article  CAS  PubMed  Google Scholar 

  2. Eng C. PTEN: one gene, many syndromes. Hum Mutat. 2003;22(3):183–98. https://doi.org/10.1002/humu.10257. (PMID: 12938083).

    Article  CAS  PubMed  Google Scholar 

  3. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet. 1997;15(4):356–62. https://doi.org/10.1038/ng0497-356. (PMID: 9090379).

    Article  CAS  PubMed  Google Scholar 

  4. Myers MP, Pass I, Batty IH, Van der Kaay J, Stolarov JP, Hemmings BA, Wigler MH, Downes CP, Tonks NK. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc Natl Acad Sci USA. 1998;95(23):13513–8. https://doi.org/10.1073/pnas.95.23.13513.PMID:9811831;PMCID:PMC24850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95(1):29–39. https://doi.org/10.1016/s0092-8674(00)81780-8. (PMID: 9778245).

    Article  CAS  PubMed  Google Scholar 

  6. Shen WH, Balajee AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell. 2007;128(1):157–70. https://doi.org/10.1016/j.cell.2006.11.042. (PMID: 17218262).

    Article  CAS  PubMed  Google Scholar 

  7. Bassi C, Ho J, Srikumar T, Dowling RJ, Gorrini C, Miller SJ, Mak TW, Neel BG, Raught B, Stambolic V. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science. 2013;341(6144):395–9. https://doi.org/10.1126/science.1236188.Erratum.In:Science.2013Sep6;341(6150):1064.PMID:23888040;PMCID:PMC5087104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hou SQ, Ouyang M, Brandmaier A, Hao H, Shen WH. PTEN in the maintenance of genome integrity: From DNA replication to chromosome segregation. BioEssays. 2017;39(10):1700082. https://doi.org/10.1002/bies.201700082.

    Article  CAS  Google Scholar 

  9. Brandmaier A, Hou SQ, Shen WH. Cell cycle control by PTEN. J Mol Biol. 2017;429(15):2265–77. https://doi.org/10.1016/j.jmb.2017.06.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mansour WY, Tennstedt P, Volquardsen J, Oing C, Kluth M, Hube-Magg C, Borgmann K, Simon R, Petersen C, Dikomey E, Rothkamm K. Loss of PTEN-assisted G2/M checkpoint impedes homologous recombination repair and enhances radio-curability and PARP inhibitor treatment response in prostate cancer. Sci Rep. 2018;8(1):3947. https://doi.org/10.1038/s41598-018-22289-7.PMID:29500400;PMCID:PMC5834544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He J, Kang X, Yin Y, Chao KS, Shen WH. PTEN regulates DNA replication progression and stalled fork recovery. Nat Commun. 2015;9(6):7620. https://doi.org/10.1038/ncomms8620.PMID:26158445;PMCID:PMC4499867.

    Article  Google Scholar 

  12. Sun Z, Lu J, Wu M, Li M, Bai L, Shi Z, Hao L, Wu Y. Deficiency of PTEN leads to aberrant chromosome segregation through downregulation of MAD2. Mol Med Rep. 2019;20(5):4235–43. https://doi.org/10.3892/mmr.2019.10668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yuen KW, Montpetit B, Hieter P. The kinetochore and cancer: what’s the connection? Curr Opin Cell Biol. 2005;17(6):576–82. https://doi.org/10.1016/j.ceb.2005.09.012. (Epub 2005 Oct 17 PMID: 16233975).

    Article  CAS  PubMed  Google Scholar 

  14. Puc J, Keniry M, Li HS, Pandita TK, Choudhury AD, Memeo L, Mansukhani M, Murty VV, Gaciong Z, Meek SE, Piwnica-Worms H, Hibshoosh H, Parsons R. Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell. 2005;7(2):193–204. https://doi.org/10.1016/j.ccr.2005.01.009. (PMID: 15710331).

    Article  CAS  PubMed  Google Scholar 

  15. Sun Z, Huang C, He J, Lamb KL, Kang X, Gu T, Shen WH, Yin Y. PTEN C-terminal deletion causes genomic instability and tumor development. Cell Rep. 2014;6(5):844–54. https://doi.org/10.1016/j.celrep.2014.01.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vazquez F, Grossman SR, Takahashi Y, Rokas MV, Nakamura N, Sellers WR. Phosphorylation of the PTEN tail acts as an inhibitory switch by preventing its recruitment into a protein complex. J Biol Chem. 2001;276(52):48627–30. https://doi.org/10.1074/jbc.C100556200. (Epub 2001 Nov 13 PMID: 11707428).

    Article  CAS  PubMed  Google Scholar 

  17. Lang V, Aillet F, Da Silva-Ferrada E, Xolalpa W, Zabaleta L, Rivas C, Rodriguez MS. Analysis of PTEN ubiquitylation and SUMOylation using molecular traps. Methods. 2015;77–78:112–8. https://doi.org/10.1016/j.ymeth.2014.09.001. (Epub 2014 Sep 16 PMID: 25224693).

    Article  CAS  PubMed  Google Scholar 

  18. Meng Z, Jia LF, Gan YH. PTEN activation through K163 acetylation by inhibiting HDAC6 contributes to tumour inhibition. Oncogene. 2016;35(18):2333–44. https://doi.org/10.1038/onc.2015.293. (Epub 2015 Aug 17 PMID: 26279303).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Park J, Han SJ, Yang SY, Yoon HJ, Park I, Woo HA, Lee SR. Redox regulation of tumor suppressor PTEN in cell signaling. Redox Biol. 2020;34:101553. https://doi.org/10.1016/j.redox.2020.101553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Choi BH, Pagano M, Dai W. Plk1 protein phosphorylates phosphatase and tensin homolog (PTEN) and regulates its mitotic activity during the cell cycle. J Biol Chem. 2014;289(20):14066–74. https://doi.org/10.1074/jbc.M114.558155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Al-Khouri AM, Ma Y, Togo SH, Williams S, Mustelin T. Cooperative phosphorylation of the tumor suppressor phosphatase and tensin homologue (PTEN) by casein kinases and glycogen synthase kinase 3beta. J Biol Chem. 2005;280(42):35195–202. https://doi.org/10.1074/jbc.M503045200. (Epub 2005 Aug 17 PMID: 16107342).

    Article  CAS  PubMed  Google Scholar 

  22. Vazquez F, Ramaswamy S, Nakamura N, Sellers WR. Phosphorylation of the PTEN tail regulates protein stability and function. Mol Cell Biol. 2000;20(14):5010–8. https://doi.org/10.1128/mcb.20.14.5010-5018.2000.PMID:10866658;PMCID:PMC85951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Torres J, Pulido R. The tumor suppressor PTEN is phosphorylated by the protein kinase CK2 at its C terminus: implications for PTEN stability to proteasome-mediated degradation. J Biol Chem. 2001;276(2):993–8. https://doi.org/10.1074/jbc.M009134200. (PMID: 11035045).

    Article  CAS  PubMed  Google Scholar 

  24. Ginn-Pease ME, Eng C. Increased nuclear phosphatase and tensin homologue deleted on chromosome 10 is associated with G0–G1 in MCF-7 cells. Cancer Res. 2003;63(2):282–6 (PMID: 12543774).

    CAS  PubMed  Google Scholar 

  25. Sun H, Lesche R, Li DM, Liliental J, Zhang H, Gao J, Gavrilova N, Mueller B, Liu X, Wu H. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. Proc Natl Acad Sci USA. 1999;96(11):6199–204. https://doi.org/10.1073/pnas.96.11.6199.PMID:10339565;PMCID:PMC26859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma J, Benitez JA, Li J, Miki S, Ponte de Albuquerque C, Galatro T, Orellana L, Zanca C, Reed R, Boyer A, Koga T, Varki NM, Fenton TR, Nagahashi Marie SK, Lindahl E, Gahman TC, Shiau AK, Zhou H, DeGroot J, Sulman EP, Cavenee WK, Kolodner RD, Chen CC, Furnari FB. Inhibition of nuclear PTEN tyrosine phosphorylation enhances glioma radiation sensitivity through attenuated DNA repair. Cancer Cell. 2019;35(3):504–18.e7. doi: https://doi.org/10.1016/j.ccell.2019.01.020. Epub 2019 Feb 28. Erratum in: Cancer Cell. 2019 May 13;35(5):816. Erratum in: Cancer Cell. 2019 Dec 9;36(6):690–91. PMID: 30827889; PMCID: PMC6424615.

  27. Misra S, Chowdhury SG, Ghosh G, Mukherjee A, Karmakar P. Both phosphorylation and phosphatase activity of PTEN are required to prevent replication fork progression during stress by inducing heterochromatin. Mutation Res/Fundamental Mol Mech Mutagen. 2022;825:111800. https://doi.org/10.1016/j.mrfmmm.2022.111800.

    Article  CAS  Google Scholar 

  28. Barr FA, Silljé HH, Nigg EA. Polo-like kinases and the orchestration of cell division. Nat Rev Mol Cell Biol. 2004;5(6):429–40. https://doi.org/10.1038/nrm1401. (PMID: 15173822).

    Article  CAS  PubMed  Google Scholar 

  29. Strebhardt K. Multifaceted polo-like kinases: drug targets and antitargets for cancer therapy. Nat Rev Drug Discov. 2010;9(8):643–60. https://doi.org/10.1038/nrd3184. (PMID: 20671765).

    Article  CAS  PubMed  Google Scholar 

  30. Liu X, Erikson RL. Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells. Proc Natl Acad Sci USA. 2003;100(10):5789–94. https://doi.org/10.1073/pnas.1031523100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Smits VA, Klompmaker R, Arnaud L, Rijksen G, Nigg EA, Medema RH. Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat Cell Biol. 2000;2(9):672–6. https://doi.org/10.1038/35023629. (PMID: 10980711).

    Article  CAS  PubMed  Google Scholar 

  32. Liu XS, Li H, Song B, Liu X. Polo-like kinase 1 phosphorylation of G2 and S-phase-expressed 1 protein is essential for p53 inactivation during G2 checkpoint recovery. EMBO Rep. 2010;11(8):626–32. https://doi.org/10.1038/embor.2010.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bassermann F, Frescas D, Guardavaccaro D, Busino L, Peschiaroli A, Pagano M. The Cdc14B-Cdh1-Plk1 axis controls the G2 DNA-damage-response checkpoint. Cell. 2008;134(2):256–67. https://doi.org/10.1016/j.cell.2008.05.043.PMID:18662541;PMCID:PMC2591934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Vugt MA, Brás A, Medema RH. Polo-like kinase-1 controls recovery from a G2 DNA damage-induced arrest in mammalian cells. Mol Cell. 2004;15(5):799–811. https://doi.org/10.1016/j.molcel.2004.07.015. (PMID: 15350223).

    Article  PubMed  Google Scholar 

  35. Meraldi P, Honda R, Nigg EA. Aurora-A overexpression reveals tetraploidization as a major route to centrosome amplification in p53-/- cells. EMBO J. 2002;21(4):483–92. https://doi.org/10.1093/emboj/21.4.483.PMID:11847097;PMCID:PMC125866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fu J, Bian M, Jiang Q, Zhang C. Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res. 2007;5(1):1–10. https://doi.org/10.1158/1541-7786.MCR-06-0208. (PMID: 17259342).

    Article  CAS  PubMed  Google Scholar 

  37. Joukov V, De Nicolo A. Aurora-PLK1 cascades as key signaling modules in the regulation of mitosis. Sci Signal. 2018;11(543):4195. https://doi.org/10.1126/scisignal.aar4195. (PMID: 30108183).

    Article  CAS  Google Scholar 

  38. Sen S, Zhou H, Zhang RD, Yoon DS, Vakar-Lopez F, Ito S, Jiang F, Johnston D, Grossman HB, Ruifrok AC, Katz RL, Brinkley W, Czerniak B. Amplification/overexpression of a mitotic kinase gene in human bladder cancer. J Natl Cancer Inst. 2002;94(17):1320–9. https://doi.org/10.1093/jnci/94.17.1320. (PMID: 12208897).

    Article  CAS  PubMed  Google Scholar 

  39. Staff S, Isola J, Jumppanen M, Tanner M. Aurora-A gene is frequently amplified in basal-like breast cancer. Oncol Rep. 2010;23(2):307–12 (PMID: 20043089).

    PubMed  Google Scholar 

  40. Yang SB, Zhou XB, Zhu HX, Quan LP, Bai JF, He J, Gao YN, Cheng SJ, Xu NZ. Amplification and overexpression of Aurora-A in esophageal squamous cell carcinoma. Oncol Rep. 2007;17(5):1083–8 (PMID: 17390048).

    CAS  PubMed  Google Scholar 

  41. Mukherjee A, Misra S, Howlett NG, Karmakar P. Multinucleation regulated by the Akt/PTEN signaling pathway is a survival strategy for HepG2 cells. Mutat Res. 2013;755(2):135–40. https://doi.org/10.1016/j.mrgentox.2013.06.009. (Epub 2013 Jun 21 PMID: 23796964).

    Article  CAS  PubMed  Google Scholar 

  42. Anand S, Penrhyn-Lowe S, Venkitaraman AR. AURORA-A amplification overrides the mitotic spindle assembly checkpoint, inducing resistance to Taxol. Cancer Cell. 2003;3(1):51–62. https://doi.org/10.1016/s1535-6108(02)00235-0. (PMID: 12559175).

    Article  CAS  PubMed  Google Scholar 

  43. Fenech M. The in vitro micronucleus technique. Mutat Res. 2000;455(1–2):81–95. https://doi.org/10.1016/s0027-5107(00)00065-8. (PMID: 11113469).

    Article  CAS  PubMed  Google Scholar 

  44. Zorba A, Buosi V, Kutter S, Kern N, Pontiggia F, Cho YJ, Kern D. Molecular mechanism of Aurora A kinase autophosphorylation and its allosteric activation by TPX2. Elife. 2014;3:e02667. https://doi.org/10.7554/eLife.02667.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lens SM, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer. 2010;10(12):825–41. https://doi.org/10.1038/nrc2964. (Epub 2010 Nov 24 PMID: 21102634).

    Article  CAS  PubMed  Google Scholar 

  46. Mansour WY, Tennstedt P, Volquardsen J, Oing C, Kluth M, Hube-Magg C, Borgmann K, Simon R, Petersen C, Dikomey E, Rothkamm K. Loss of PTEN-assisted G2/M checkpoint impedes homologous recombination repair and enhances radio-curability and PARP inhibitor treatment response in prostate cancer. Sci Rep. 2018;8(1):1–2.

    Article  CAS  Google Scholar 

  47. Gong L, Govan JM, Evans EB, Dai H, Wang E, Lee SW, Lin HK, Lazar AJ, Mills GB, Lin SY. Nuclear PTEN tumor-suppressor functions through maintaining heterochromatin structure. Cell Cycle. 2015;14(14):2323–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. He J, Zhang Z, Ouyang M, Yang F, Hao H, Lamb KL, Yang J, Yin Y, Shen WH. PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis. Nat Commun. 2016;5(7):12355. https://doi.org/10.1038/ncomms12355.PMID:27492783;PMCID:PMC4980451.

    Article  Google Scholar 

  49. Feng J, Liang J, Li J, Li Y, Liang H, Zhao X, McNutt MA, Yin Y. PTEN controls the DNA replication process through MCM2 in response to replicative stress. Cell Rep. 2015;13(7):1295–303. https://doi.org/10.1016/j.celrep.2015.10.016.

    Article  CAS  PubMed  Google Scholar 

  50. Misra S, Mukherjee A, Karmakar P. Phosphorylation of PTEN at STT motif is associated with DNA damage response. Mutat Res. 2014;770:112–9.

    Article  CAS  PubMed  Google Scholar 

  51. Steelman LS, Navolanic PM, Sokolosky ML, Taylor JR, Lehmann BD, Chappell WH, Abrams SL, Wong EW, Stadelman KM, Terrian DM, Leslie NR, Martelli AM, Stivala F, Libra M, Franklin RA, McCubrey JA. Suppression of PTEN function increases breast cancer chemotherapeutic drug resistance while conferring sensitivity to mTOR inhibitors. Oncogene. 2008;27(29):4086–95. https://doi.org/10.1038/onc.2008.49.

    Article  CAS  PubMed  Google Scholar 

  52. Schmitz M, Grignard G, Margue C, Dippel W, Capesius C, Mossong J, Nathan M, Giacchi S, Scheiden R, Kieffer N. Complete loss of PTEN expression as a possible early prognostic marker for prostate cancer metastasis. Int J Cancer. 2007;120:1284–92. https://doi.org/10.1002/ijc.22359.

    Article  CAS  PubMed  Google Scholar 

  53. Da-M Li, Sun H. PTEN/MMAC1/TEP1 suppresses the tumorigenicity and induces G1 cell cycle arrest in human glioblastoma cells. PNAS. 1998;95(26):15406–11. https://doi.org/10.1073/pnas.95.26.15406.

    Article  Google Scholar 

  54. Liu Y, Du X, Zhang S, Liu Y, Zhang Q, Yin Q, McNutt MA, Yin Y. PTEN regulates spindle assembly checkpoint timing through MAD1 in interphase. Oncotarget. 2017;8(58):98040–50. https://doi.org/10.18632/oncotarget.20532.PMID:29228672;PMCID:PMC5716712.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Choi BH, Xie S, Dai W. PTEN is a negative regulator of mitotic checkpoint complex during the cell cycle. Exp Hematol Oncol. 2017;29(6):19. https://doi.org/10.1186/s40164-017-0079-0.PMID:28670501;PMCID:PMC5492438.

    Article  Google Scholar 

  56. van Ree JH, Nam HJ, Jeganathan KB, Kanakkanthara A, van Deursen JM. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes. Nat Cell Biol. 2016;18(7):814–21. https://doi.org/10.1038/ncb3369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leonard MK, Hill NT, Bubulya PA, Kadakia MP. The PTEN-Akt pathway impacts the integrity and composition of mitotic centrosomes. Cell Cycle. 2013;12(9):1406–15. https://doi.org/10.4161/cc.24516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Song MS, Carracedo A, Salmena L, Song SJ, Egia A, Malumbres M, Pandolfi pp. Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independent manner. Cell. 2011;144(2):187–99. https://doi.org/10.1016/j.cell.2010.12.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is financially supported by The Department of Science and Technology (DST-SERB), Government of India (Sanction No. EMR/2016/001151). Ginia Ghosh was awarded a fellowship from the Council of Scientific and Industrial Research (Sanction no. 37(1673)/16/EMR-II). Prof. Dr. W.R. Sellers of Harvard Medical School generously donated hosphor-deficient PTEN and wild-type PTEN. We also appreciate and thank Dr. Prosenjit Sen of the Indian Association for Science for providing confocal microscopy.

Funding

This study is supported by the Department of Science and Technology, Republic of India, EMR/2016/001151 to Parimal Karmakar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parimal Karmakar.

Ethics declarations

Conflict of interest

All the authors declare there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, G., Misra, S., Ray, R. et al. Phospho PTEN mediated dephosphorylation of mitotic kinase PLK1 and Aurora Kinase A prevents aneuploidy and preserves genomic stability. Med Oncol 40, 119 (2023). https://doi.org/10.1007/s12032-023-01985-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-01985-z

Keywords

Navigation