Skip to main content

Advertisement

Log in

Neolamarckia cadamba (Roxb.) Bosser (Rubiaceae) extracts: promising prospects for anticancer and antibacterial potential through in vitro and in silico studies

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Neolamarckia cadamba is an Indian traditional medicinal plant having various therapeutic potentials. In the present study, we did solvent-based extraction of Neolamarckia cadamba leaves. The extracted samples were screened against liver cancer cell line (HepG2) and bacteria (Escherichia coli). MTT cytotoxic assay was performed for in vitro analysis of extracted samples against the HepG2 cell lines and the normal human prostate PNT2 cell line. Chloroform extract of Neolamarckia cadamba leaves showed better activity with IC50 value 69 μg/ml. DH5α strain of Escherichia coli (E. coli) was cultured in Luria Bertani (LB) broth media and minimum inhibitory concentration (MIC) and Minimum bactericidal concentration (MBC) were calculated. Solvent extract chloroform showed better activity in MTT analysis and antibacterial screening and it was taken for characterization of phytocomposition by Fourier transform infrared (FTIR) and gas chromatography mass spectrometry (GC–MS). The identified phytoconstituents were docked with potential targets of liver cancer and E. coli. The phytochemical 1-(5-Hydroxy-6-hydroxymethyl-tetrahydropyran-2-yl)-5-methyl-1H-pyrimidine-2,4-dione shows highest docking score against the targets PDGFRA (PDB ID: 6JOL) and Beta-ketoacyl synthase 1(PDB ID: 1FJ4) and their stability was further confirmed by molecular dynamics simulation studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data included in the manuscript.

Code availability

Not applicable.

References

  1. Pandey A, Negi PS. Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cadamba: a review. J Ethnopharmacol Elsevier. 2016;181:118–35.

    Article  CAS  Google Scholar 

  2. Dwevedi A, Sharma K, Sharma YK. Cadamba: A miraculous tree having enormous pharmacological implications. Pharmacogn Rev. 2015;9:107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Khare C. Indian herbal remedies: rational Western therapy, ayurvedic, and other traditional usage, Botany. 2004. https://books.google.com/books?hl=en&lr=&id=463ERB3VeUoC&oi=fnd&pg=PA1&dq=Khare,+C.P.,+2011.+Indian+Herbal+Remedies:+Rational+Western+Therapy,+Ayurvedic+and+Other+Traditional+Usage,+Botany,+Springer+Science+%26+Business+Media,+New+York,+USA,+pp-66-67.+&ots=d6QMJKSF7p&sig=9AB9xk60lJ5SYRJpyYNjiCAbsQo. Accessed 30 Nov 2022.

  4. Umachigi SP, Kumar GS, Jayaveera K, Kishorev KD, Ashok KCK, Dhanapal R. Antimicrobial, Wound healing and antioxidant activities of Anthocephalus Cadamba. Afr J Tradit Complement Altern Med. 2022;4:481.

    Article  Google Scholar 

  5. Verma R, Chaudhary F, Singh A, Pharm M, Pharmaceu Sci GJ. Neolamarckia Cadamba: a comprehensive pharmacological. Glob J Pharmaceu Sci. 2018;6(4):73–8.

    Google Scholar 

  6. Pandey A, Chauhan AS, Haware DJ, Negi PS. Proximate and mineral composition of Kadamba (Neolamarckia cadamba) fruit and its use in the development of nutraceutical enriched beverage. J Food Sci Technol. 2018;55:4330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chandel M, Kaur S, Kumar S. Studies on the genoprotective/antioxidant potential of methanol extract of Anthocephalus cadamba (Roxb.) Miq. J Med Plants Res. 2011;5:4764–70.

    Google Scholar 

  8. Ahmed F, Rahman S, Ahmed N, Hossain M, Biswas A, Sarkar S, et al. Evaluation of Neolamarckia cadamba (Roxb) bosser leaf extract on glucose tolerance in glucose-induced hyperglycemic mice. Afr J Tradit Complement Altern Med. 2010;8:79–81.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dolai N, Karmakar I, Suresh Kumar RB, Kar B, Bala A, Haldar PK. Evaluation of antitumor activity and in vivo antioxidant status of Anthocephalus cadamba on Ehrlich ascites carcinoma treated mice. J Ethnopharmacol. 2012;142:865–70.

    Article  PubMed  Google Scholar 

  10. Sumanta M, Dash G, Research AS-J of P, 2009 undefined. Analgesic, anti-inflammatory and antipyretic studies of Neolamarckia cadamba barks. cabdirect.org. https://www.cabdirect.org/cabdirect/abstract/20103127110. Accessed 4 Oct 2022

  11. Rafshanjani M, Shuaib A, Parvin S, Kader M, 2014 undefined. Antimicrobial and Preliminary Cytotoxic effects of Ethanol extract and its fractions of Anthocephalus cadamba (Roxb.) Miqstem bark. search.ebscohost.com. https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=09767126&AN=100248234&h=vTcwT4AylGL%2BSJhpTlvviytQQ17oJQAv6nCI%2FSGyEWOH3VFDMcOvFhlVSwa6NGsTcz5%2B2Z0Huv3QDNwgx8lPMQ%3D%3D&crl=c. Accessed 4 Oct 2022

  12. Singh S, Ishar MPS, Saxena AK, Kaur A. Cytotoxic effect of Anthocephalus cadamba Miq. leaves on human cancer cell lines. Pharmacogn J. 2013;5:127–9.

    Article  Google Scholar 

  13. Razali S, Firus Khan AY, Khatib A, Ahmed QU, Abdul Wahab R, Zakaria ZA. An in vitro anticancer activity evaluation of Neolamarckia cadamba (Roxb.) Bosser Leaves’ extract and its metabolite profile. Front Pharmacol. 2021. https://doi.org/10.3389/fphar.2021.741683.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chatterjee A, Sharma N, Mazumder PM. Evaluation of antioxidant, immunomodulatory and anticancer properties of methanolic extract of Neolamarckia cadamba Linn. Fruits. Indian J Pharm Educ Res. 2021;55:s501–9.

    Article  CAS  Google Scholar 

  15. Khandelwal V, Choudhary K. Antioxidant and anticancer potential of Neolamarckia cadamba (ROXB.) bark extract. J Exp Biol Agric Sci. 2020. https://doi.org/10.1806/2020.8(3).334.338.

    Article  Google Scholar 

  16. Llovet JM, Kelley RK, Villanueva A, Singal AG, Pikarsky E, Roayaie S, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. https://pubmed.ncbi.nlm.nih.gov/33479224/. Accessed 25 May 2022

  17. BaloghVictor JD III, Asham EH, Burroughs SG, Boktour M, Saharia A, et al. Hepatocellular carcinoma: a review. J Hepatocell Carcinoma. 2016;3:41–53.

    Article  Google Scholar 

  18. Galicia-Moreno M, Silva-Gomez JA, Lucano-Landeros S, Santos A, Monroy-Ramirez HC, Armendariz-Borunda J. Liver Cancer: Therapeutic Challenges and the Importance of Experimental Models. Can J Gastroenterol Hepatol 2021.

  19. Liu CY, Chen KF, Chen PJ. Treatment of Liver Cancer. Cold Spring Harb Perspect Med. Cold Spring Harb Perspect Med. https://pubmed.ncbi.nlm.nih.gov/26187874/. Accessed 25 May 2022

  20. KumarAmit P, Singh K, PoojaKavindra V, Tiwari N, et al. Network pharmacology-based study on apigenin present in the methanolic fraction of leaves extract of Cestrum nocturnum L. to uncover mechanism of action on hepatocellular carcinoma. Med Oncol. 2022;39:155.

    Article  Google Scholar 

  21. Khameneh B, Iranshahy M, Soheili V, Fazly Bazzaz BS. Review on plant antimicrobials: a mechanistic viewpoint. Antimicrob Resist Infect Control. 2019;8(1):1–28.

    Article  Google Scholar 

  22. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Robles Aguilar G, Gray A, et al. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399:629–55.

    Article  CAS  Google Scholar 

  23. Braz VS, Melchior K, Moreira CG. Escherichia coli as a multifaceted pathogenic and versatile bacterium. Front Cell Infect Microbiol. 2020;10:793.

    Article  Google Scholar 

  24. van Elsland D, Neefjes J. Bacterial infections and cancer. EMBO Rep. 2018;19(11):e46632.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yang B, Petrick JL, Thistle JE, Pinto LA, Kemp TJ, Tran HQ, et al. Bacterial translocation and risk of liver cancer in a Finnish cohort. Cancer Epidemiology Biomarkers and Prevention. Am Assoc Cancer Res. 2019;28:807–13.

    CAS  Google Scholar 

  26. Soo V, Kwan B, Quezada H, Castillo-Juárez I, Pérez-Eretza B, García-Contreras S, et al. Repurposing of Anticancer drugs for the treatment of bacterial infections. Curr Top Med Chem. 2017;17:1157–76.

    Article  CAS  PubMed  Google Scholar 

  27. Siddique HR, Mishra SK, Karnes RJ, Saleem M. Lupeol, a novel androgen receptor inhibitor: implications in prostate cancer therapy. Clin Cancer Res. 2011;17:5379–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Singh A, Verma A, Singh R, Sahoo AK, Samanta SK. Combination therapy of biogenic C-dots and lysozyme for enhanced antibacterial and antibiofilm activity. Nanotechnology. 2020;32:085104.

    Article  Google Scholar 

  29. Choi KJ, Baik IH, Ye SK, Lee YH. Molecular targeted therapy for hepatocellular carcinoma: present status and future directions. Biol Pharm Bull. 2015;38:986–91.

    Article  CAS  PubMed  Google Scholar 

  30. Wang W, Shui L, Liu Y, Zheng M. C-Kit, a double-edged sword in liver regeneration and diseases. Front Genet. 2021;12:598855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sabbagh G, Berakdar N. Docking studies of flavonoid compounds as inhibitors of β-ketoacyl acyl carrier protein synthase I (Kas I) of Escherichia coli. J Mol Graph Model. 2015;61:214–23.

    Article  CAS  PubMed  Google Scholar 

  32. Abo-Bakr AM, Alsoghier HM, Abdelmonsef AH. Molecular docking, modeling, semiempirical calculations studies and in vitro evaluation of new synthesized pyrimidin-imide derivatives. J Mol Struct. 2022;1249:131548.

    Article  CAS  Google Scholar 

  33. Sauvage E, Derouaux A, Fraipont C, Joris M, Herman R, Rocaboy M, et al. Crystal structure of penicillin-binding protein 3 (PBP3) from Escherichia coli. PLoS ONE. 2014;9:98042.

    Article  Google Scholar 

  34. Elfaky MA, El-Halawany AM, Koshak AE, Alshali KZ, El-Araby ME, Khayat MT, et al. Bioassay guided isolation and docking studies of a potential β-lactamase inhibitor from Clutia myricoides. Molecules. 2020;25(11):2566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mohi El-Deen EM, Abd El-Meguid EA, Hasabelnaby S, Karam EA, Nossier ES. Synthesis, docking studies, and in vitro evaluation of some novel thienopyridines and fused thienopyridine-quinolines as antibacterial agents and dna gyrase inhibitors. Molecules. 2019;24(20):3650.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7(1):42717.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–18.

    Article  PubMed  Google Scholar 

  39. Huang J, Mackerell AD. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem. 2013;34:2135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem. 2011;32:2359–68.

    Article  CAS  PubMed  Google Scholar 

  41. Kushwaha PP, Singh AK, Bansal T, Yadav A, Prajapati KS, Shuaib M, et al. Identification of natural inhibitors against SARS-CoV-2 drugable targets using molecular docking, molecular dynamics simulation, and MM-PBSA approach. Front Cell Infect Microbiol. 2021;11:728.

    Article  Google Scholar 

  42. Kumari R, Kumar R, Lynn A. g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model. 2014;54:1951–62.

    Article  CAS  PubMed  Google Scholar 

  43. Nandiyanto ABD, Oktiani R, Ragadhita R. How to read and interpret ftir spectroscope of organic material. Indones J Sci Technol. 2019;4:97–118.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Indian Institute of Information Technology and Aligarh Muslim University for providing the infrastructure needed to conduct this research. We are thankful to BSI, Central Regional Center, Allahabad, for authenticating the plant. We are also thankful to Dr. Ajai Prakash Gupta, Principal Technical Officer, CSIR—Indian Institute of Integrative Medicine Jammu, for GC-MS study.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

The study is conceptualized and designed by AM and NM. The samples were screened for anticancer potential by SKM and HS, and antibacterial screening was done by AS, AM, and SKS. AM performed the in silico analysis and wrote the manuscript, which NM revised. All the authors agreed on the final version of the manuscript.

Corresponding author

Correspondence to Nidhi Mishra.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Maurya, S.K., Singh, A. et al. Neolamarckia cadamba (Roxb.) Bosser (Rubiaceae) extracts: promising prospects for anticancer and antibacterial potential through in vitro and in silico studies. Med Oncol 40, 99 (2023). https://doi.org/10.1007/s12032-023-01971-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-023-01971-5

Keywords

Navigation