Skip to main content

Advertisement

Log in

Investigations on effects of titanium dioxide (TiO2) nanoparticle in combination with UV radiation on breast and skin cancer cells

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

In this study, we have investigated the chemotherapeutic potential of titanium dioxide (TiO2) nanoparticles on skin and breast cancer cells. The cells have treated with a 75 µg/ml concentration of titanium dioxide because it is a recommended dose with proven effectiveness in vitro studies and then the cells were exposed to UV-A radiation. The combined effects of titanium dioxide and UV-A radiation on cell viability, cell cycle, plasma membrane, mitochondrial membrane potentials and apoptotic activity of the cells were investigated. The viability of SK-MEL 30 cells was measured by MTT assay and apoptotic activity of cells was determined by Annexin-V FITC/PI staining. As a result of the research, an increase was observed in the viability of cells treated with 75 µg/ml titanium dioxide concentration, while a significant decrease in cell viability was observed for both cell types when UV-A radiation and TiO2 were applied together. The results also showed that the percentage of apoptotic cells increased as a result of UV + TiO2 exposure. Accordingly, it can be said that TiO2 nanoparticles may research as potential chemotherapeutic agents for skin and breast cancers, especially in the presence of UV radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

The datasets generated and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Blake DM, Maness P-C, Huang Z, Wolfrum EJ, Huang J. Application of the photocatalytic chemistry of titanium dioxide to disinfection and the killing of cancer cells. Sep Purif Methods. 1999;28:1–50.

    Article  CAS  Google Scholar 

  2. Chihara Y, Fujimoto K, Kondo H, Moriwaka Y, Sasahira T, Hirao Y, Kuniyasu H. Anti-tumor effects of liposome- encapsulated titanium dioxide in nude mice. Pathobiology. 2007;74:353–8.

    Article  CAS  Google Scholar 

  3. Thevenot P, Cho J, Wavhal D, Timmons RB, Tang L. Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomedicine. 2008;4:226–36.

    Article  CAS  Google Scholar 

  4. Wu Q, Guo D, Du Y, Liu D, Wang D, Bi H. UVB irradiation enhances TiO2 nanoparticle-induced disruption of calcium homeostasis in human lens epithelial cells. Photochem Photobiol. 2014;90:1324–31.

    Article  CAS  Google Scholar 

  5. Yamaguchi S, Kobayashi H, Narita T, Kanehira K, Sonezaki S, Kubota Y, Iwasaki Y. Novel photodynamic therapy using water-dispersed TiO2-polyethylene glycol compound, evaluation of antitumor effect on glioma cells and spheroids in vitro. Photochem Photobiol. 2010;86:964–97.

    Article  CAS  Google Scholar 

  6. Fujishima A, Rao TN, Tryk DA. Titanium dioxide photocatalysis. J Photochem Photobiol, C. 2000;1:1–21.

    Article  CAS  Google Scholar 

  7. Matsui K, Karasaki M, Segawa M, Hwang SY, Tanaka T, Ogino C, Kondo A. Biofunctional TiO2 nanoparticle-mediated photokilling of cancer cells using UV irradiation. Med Chem Commun. 2010;1:209–11.

    Article  CAS  Google Scholar 

  8. Nasr R, Hasanzadeh H, Khaleghian A, Moshtaghian A, Emadi A, Moshfegh S. Induction of apoptosis and inhibition of invasion in gastric cancer cells by titanium dioxide nanoparticles. Oman Med J. 2018;33:111–7.

    Article  CAS  Google Scholar 

  9. Kubota Y, Shuin T, Kawasaki C, Hosaka M, Kitamura H, Cai R, Sakai H, Hashimoto K, Fujishima A. Photokilling of T-24 human bladder cancer cells with titanium dioxide. Br J Cancer. 1994;70:1107–11.

    Article  CAS  Google Scholar 

  10. Li Q, Wang X, Xiaohua Lu, Tian H, Jiang H, Lv G, Guo D, Chunhui Wu, Chen B. The incorporation of daunorubicin in cancer cells through the use of titanium dioxide whiskers. Biomaterials. 2009;30:4708–15.

    Article  CAS  Google Scholar 

  11. Yoon H, Kim D, Park M, Kim J, Kim J, Srituravanich W, Shin B, Jung Y, Jeon S. Extraordinary enhancement of UV absorption in TiO2 nanoparticles enabled by low-oxidized graphene nanodots. J Phys Chem C. 2018;122:12114–21.

    Article  CAS  Google Scholar 

  12. Bengalli R, Ortelli S, Blosi M, Costa A, Mantecca P, Fiandra L. In vitro toxicity of TiO2:SiO2 nanocomposites with different photocatalytic properties. Nanomaterials (Basel). 2019;21:1041.

    Article  Google Scholar 

  13. Drasler B, Sayre P, Steinhäuser KG, Petri-Fink A, Rothen-Rutishauser B. In vitro approaches to assess the hazard of nanomaterials. Nano Impact. 2017;8:99–116.

    Google Scholar 

  14. Farcal L, Torres Andón F, Di Cristo L, Rotoli BM, Bussolati O, Bergamaschi E, Mech A, Hartmann NB, Rasmussen K, Riego-Sintes J, et al. Comprehensive in vitro toxicity testing of a panel of representative oxide nanomaterials: first steps towards an intelligent testing strategy. PLoS ONE. 2015;10: e0127174.

    Article  Google Scholar 

  15. Han YH, Kim SH, Kim SZ, Park WH. Antimycin A as a mitochondrial electron transport inhibitor prevents the growth of human lung cancer A549 cells. Oncol Rep. 2008;20:689–93.

    CAS  Google Scholar 

  16. Sumit JS, Paul WS. Tocotrienol-induced cytotoxicity is unrelated to mitochondrial stress apoptotic signaling in neoplastic mammary epithelial cells. Biochem Cell Biol. 2005;2007:86–95.

    Google Scholar 

  17. Çeşmeli S, Avcı CB. Application of titanium dioxide (TiO2) nanoparticles in cancer therapies. J Drug Target. 2019;27:762–6.

    Article  Google Scholar 

  18. Hou Y, Cai K, Li J, Chen X, Lai M, Hu Y, Luo Z, Ding X, Xu D. Effects of titanium nanoparticles on adhesion, migration, proliferation, and differentiation of mesenchymal stem cells. Int J Nanomed. 2013;2013:3619–30.

    Google Scholar 

  19. Abdel-Ghany S, Raslan S, Tombuloglu H, Shamseddin A, Cevik E, Said O, Madyan EF, Senel M, Bozkurt A, Rehman S, Sabit H. Vorinostat-loaded titanium oxide nanoparticles (anatase) induce G2/M cell cycle arrest in breast cancer cells via PALB2 upregulation. Biotech. 2020;10:407.

    Google Scholar 

  20. Lotfian H, Nemati F. Cytotoxic effect of TiO2 nanoparticles on breast cancer cell line (Mcf-7). IIOAB J. 2016;7:219–24.

    Google Scholar 

  21. Dick CAJ, Brown DM, Donaldson K, Stone V. The role of free radicals in toxic and inflammatory effects of four different ultrafine particle types. Inhalation Toxicol. 2003;15:39–52.

    Article  CAS  Google Scholar 

  22. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2), implication for nanoparticle neurotoxicity. Environ Sci Technol. 2006;40:4346–52.

    Article  CAS  Google Scholar 

  23. Ogino C, Farshbaf Dadjour M, Takaki K, Shimizu N. Enhancement of sonocatalytic cell lysis of Escherichia coli in the presence of TiO2. Biochem Eng J. 2006;32:100–5.

    Article  CAS  Google Scholar 

  24. Olmedo DG, Tasat DR, Guglielmotti MB, Cabrini RL. Effects of titanium dioxide on the oxidative metabolism of alveolar macrophages, an experimental study in rats. J Biomed Mater Res. 2005;73:142–9.

    Article  Google Scholar 

  25. Yamaguchi K, Sugiyama T, Kato S, Kondo Y, Ageyama N, Kanekiyo M, Honda M. A novel CD4-conjugated ultraviolet light-activated photocatalyst inactivates HIV-1 and SIV efficiently. J Med Virol. 2008;80:1322–31.

    Article  CAS  Google Scholar 

  26. Zhang AP, Sun YP. Photocatalytic killing effect of TiO2 nanoparticles on LS-174- T human colon cancer cells. World J Gastroenterol. 2004;10:3191–3.

    Article  CAS  Google Scholar 

  27. Ziental D, Czarczynska-Goslinska B, Mlynarczyk DT, Glowacka-Sobotta A, Stanisz B, Goslinski T, Sobotta L. Titanium dioxide nanoparticles: prospects and applications in medicine. Nanomaterials. 2020;10:387–418.

    Article  CAS  Google Scholar 

  28. Raja G, Cao S, Kim DH, Kim TJ. Mechanoregulation of titanium dioxide nanoparticles in cancer therapy. Mater Sci Eng, C. 2020;107:110303–8.

    Article  CAS  Google Scholar 

  29. Eşmekaya MA, Canseven AG, Kayhan H, Tuysuz MZ, Sirav B, Seyhan N. Mitochondrial hyperpolarization and cytochrome-c release in microwave-exposed MCF-7 cells. Gen Physiol Biophys. 2017;36:211–8.

    Article  Google Scholar 

  30. Kadenbach B, Arnold S, Lee I, Hüttemann M. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochim Biophys Acta. 2004;1655:400–8.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Gazi University BAP department (Grant No: 01/2019-32).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MAE, MTB; methodology: MAE, MTB, AGCK; formal analysis and investigation: MAE, ZÇ; writing–original draft preparation: MAE, MTB; writing–review and editing: MAE, MTB; funding acquisition: MAE; resources: MAE, ZÇ, MÖ; supervision: MAE.

Corresponding author

Correspondence to Mustafa Tuğfan Bilkan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to participate

Yes. All authors agreed to participate in this research.

Consent for publication

Yes. All authors have approved the last version of the manuscript for its submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilkan, M.T., Çiçek, Z., Kurşun, A.G.C. et al. Investigations on effects of titanium dioxide (TiO2) nanoparticle in combination with UV radiation on breast and skin cancer cells. Med Oncol 40, 60 (2023). https://doi.org/10.1007/s12032-022-01931-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01931-5

Keywords

Navigation