Skip to main content

Advertisement

Log in

RUNX3 improves CAR-T cell phenotype and reduces cytokine release while maintaining CAR-T function

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

CAR-T therapy has shown successful in the treatment of certain types of hematological malignancy, while the efficacy of CAR-T cell in treating solid tumors has been limited due to the exhaustion of CAR-T caused by the tumor microenvironment in solid tumors. Therefore, improving the exhaustion of CAR-T cell is one of the inspiring strategies for CAR-T treatment of solid tumors. As an important regulator in T cell immunity, the transcription factor RUNX3 not only negatively regulates the terminal differentiation T-bet gene, reducing the ultimate differentiation of T cells, but also increases the residency of T cells in non-lymphoid tissues and tumors. By overexpressing RUNX3 in CAR-T cells, we found that increasing the expression of RUNX3 maintained the low differentiation of CAR-T cells, further improving the exhaustion of CAR-T cells during antigen stimulation. In vitro, we found that RUNX3 could reduce the release of cytokines while maintaining CAR-T cells function. In re-challenge experiments, CAR-T cells overexpressing RUNX3 (Runx3-OE CAR-T) were safer than conventional CAR-T cells, while RUNX3 could also maintain the anti-tumor efficacy of CAR-T cells in vivo. Collectively, we found that Runx3-OE CAR-T cells can improve CAR-T phenotype and reduce cytokines release while maintaining CAR-T cells function, which may improve the safety of CAR-T therapy in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells[J]. Blood. 2012;119(12):2709–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Marofi F, Rahman HS, Al-Obaidi ZMJ, Jalil AT, Abdelbasset WK, Suksatan W, et al. Novel CAR T therapy is a ray of hope in the treatment of seriously ill AML patients[J]. Stem Cell Res Ther. 2021;12(1):465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scarfo I, Maus MV. Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment[J]. J Immunother Cancer. 2017;5:28.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kyte JA. Strategies for improving the efficacy of CAR T cells in solid cancers[J]. Cancers. 2022;14(3):571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang Z, Han W. Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy[J]. Biomarker Res. 2018;6:4.

    Article  Google Scholar 

  6. Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade[J]. Nat Med. 2018;24(6):731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li H, Zhao Y. Increasing the safety and efficacy of chimeric antigen receptor T cell therapy[J]. Protein Cell. 2017;8(8):573–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy[J]. Nat Rev Immunol. 2022;22(2):85–96.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang C, Wang Z, Yang Z, Wang M, Li S, Li Y, et al. Phase I escalating-dose trial of CAR-T Therapy Targeting CEA(+) metastatic colorectal cancers[J]. Molecular therapy : the journal of the American Society of Gene Therapy. 2017;25(5):1248–58.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang Y, Li Y, Zhu B. T-cell exhaustion in the tumor microenvironment[J]. Cell Death Dis. 2015;6: e1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wherry EJ. T cell exhaustion[J]. Nat Immunol. 2011;12(6):492–9.

    Article  CAS  PubMed  Google Scholar 

  12. Restifo NP. Big bang theory of stem-like T cells confirmed[J]. Blood. 2014;124(4):476–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gattinoni L, Klebanoff CA, Restifo NP. Paths to stemness: building the ultimate antitumour T cell[J]. Nat Rev Cancer. 2012;12(10):671–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawalekar OU, O’Connor RS, Fraietta JA, Guo L, McGettigan SE, Posey AD Jr, et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T Cells[J]. Immunity. 2016;44(2):380–90.

    Article  CAS  PubMed  Google Scholar 

  15. Kuznetsova M, Lopatnikova J, Shevchenko J, Silkov A, Maksyutov A, Sennikov S. Cytotoxic activity and memory t cell subset distribution of in vitro-stimulated CD8(+) T cells specific for HER2/neu Epitopes[J]. Front Immunol. 2019;10:1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Taniuchi I, Osato M, Egawa T, Sunshine MJ, Bae SC, Komori T, et al. Differential requirements for Runx proteins in CD4 repression and epigenetic silencing during T lymphocyte development[J]. Cell. 2002;111(5):621–33.

    Article  CAS  PubMed  Google Scholar 

  17. Egawa T. Runx and ThPOK: a balancing act to regulate thymocyte lineage commitment[J]. J Cell Biochem. 2009;107(6):1037–45.

    Article  CAS  PubMed  Google Scholar 

  18. Wong WF, Kohu K, Chiba T, Sato T, Satake M. Interplay of transcription factors in T-cell differentiation and function: the role of Runx[J]. Immunology. 2011;132(2):157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shan Q, Zeng Z, Xing S, Li F, Hartwig SM, Gullicksrud JA, et al. The transcription factor Runx3 guards cytotoxic CD8(+) effector T cells against deviation towards follicular helper T cell lineage[J]. Nat Immunol. 2017;18(8):931–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lotem J, Levanon D, Negreanu V, Leshkowitz D, Friedlander G, Groner Y. Runx3-mediated transcriptional program in cytotoxic lymphocytes[J]. PLoS ONE. 2013;8(11): e80467.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Milner JJ, Toma C, Yu B, Zhang K, Omilusik K, Phan AT, et al. Runx3 programs CD8(+) T cell residency in non-lymphoid tissues and tumours[J]. Nature. 2017;552(7684):253–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pei WC, Hu J, Song JH, Wang WF, He YY, Pang WJ, et al. Effects of CAR structure and culture conditions on memory CAR-T cells[J]. Eur Rev Med Pharmacol Sci. 2021;25(5):2313–7.

    PubMed  Google Scholar 

  23. Golubovskaya V, Wu L. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy[J]. Cancers. 2016;8(3):36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Turtle CJ, Hanafi LA, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells[J]. Sci Transl Med. 2016. https://doi.org/10.1126/scitranslmed.aaf8621.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG, Turtle CJ, et al. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo[J]. Leukemia. 2016;30(2):492–500.

    Article  CAS  PubMed  Google Scholar 

  26. Klebanoff CA, Gattinoni L, Torabi-Parizi P, Kerstann K, Cardones AR, Finkelstein SE, et al. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells[J]. Proc Natl Acad Sci USA. 2005;102(27):9571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ando M, Ito M, Srirat T, Kondo T, Yoshimura A. Memory T cell, exhaustion, and tumor immunity[J]. Immunological medicine. 2020;43(1):1–9.

    Article  PubMed  Google Scholar 

  28. Angelosanto JM, Blackburn SD, Crawford A, Wherry EJ. Progressive loss of memory T cell potential and commitment to exhaustion during chronic viral infection[J]. J Virol. 2012;86(15):8161–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baitsch L, Legat A, Barba L, Fuertes Marraco SA, Rivals JP, Baumgaertner P, et al. Extended co-expression of inhibitory receptors by human CD8 T-cells depending on differentiation, antigen-specificity and anatomical localization[J]. PLoS ONE. 2012;7(2): e30852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rafiq S, Yeku OO, Jackson HJ, Purdon TJ, van Leeuwen DG, Drakes DJ, et al. Targeted delivery of a PD-1-blocking scFv by CAR-T cells enhances anti-tumor efficacy in vivo[J]. Nat Biotechnol. 2018;36(9):847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nie J, Wang C, Liu Y, Yang Q, Mei Q, Dong L, et al. Addition of low-dose decitabine to Anti-PD-1 antibody camrelizumab in relapsed/refractory classical hodgkin lymphoma[J]. J Clin Oncol. 2019;37(17):1479–89.

    Article  CAS  PubMed  Google Scholar 

  32. Yan G, Du Q, Wei X, Miozzi J, Kang C, Wang J, et al. Application of real-time cell electronic analysis system in modern pharmaceutical evaluation and analysis[J]. Molecules (Basel, Switzerland). 2018;23(12):3280.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yah CS, Simate GS. Engineered nanoparticle bio-conjugates toxicity screening: The xCELLigence cells viability impact[J]. Bioimpacts. 2020;10(3):195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li X, Shao M, Zeng X, Qian P, Huang H. Signaling pathways in the regulation of cytokine release syndrome in human diseases and intervention therapy[J]. Signal Transduct Target Ther. 2021;6(1):367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weber EW, Parker KR, Sotillo E, Lynn RC, Anbunathan H, Lattin J, et al. Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling[J]. Science. 2021. https://doi.org/10.1126/science.aba1786.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lamers CHJ, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, et al. Treatment of metastatic renal cell carcinoma With CAIX CAR-engineered T cells: Clinical evaluation and management of on-target toxicity[J]. Mol Ther. 2013;21(4):904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DAN, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis[J]. Mol Therapy. 2011;19(3):620–6.

    Article  CAS  Google Scholar 

  38. Cherkassky L, Hou Z, Amador-Molina A, Adusumilli PS. Regional CAR T cell therapy: An ignition key for systemic immunity in solid tumors[J]. Cancer Cell. 2022;40(6):569–74.

    Article  CAS  PubMed  Google Scholar 

  39. Shimabukuro-Vornhagen A, Gödel P, Subklewe M, Stemmler HJ, Schlößer HA, Schlaak M, et al. Cytokine release syndrome[J]. J Immunother Cancer. 2018;6(1):56.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This work is supported by grants from the National Natural Science Foundation of China (81903157, to CC. Zhang.)

Author information

Authors and Affiliations

Authors

Contributions

Cheng Qian and Chengcheng Zhang designed the research study. Xiuxiu Zhu performed the research. Wuling Li and Jiadong Gao conducted the flow cytometry tests. Junjie Shen and Yanmin Xu cultivated CAR-T cells. Xiuxiu Zhu wrote the paper.

Corresponding authors

Correspondence to Chengcheng Zhang or Cheng Qian.

Ethics declarations

Competing interests

The CAR-T cells and detection methods of this experiment came from Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd. The authors declare no conflict interests.

Ethical approval

All procedures were approved by the China Council on Animal Care and Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd.

Consent to participate

All procedures were approved by the China Council on Animal Care and Chongqing Institute of Precision Medicine and Biotechnology Co., Ltd.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 503 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Li, W., Gao, J. et al. RUNX3 improves CAR-T cell phenotype and reduces cytokine release while maintaining CAR-T function. Med Oncol 40, 89 (2023). https://doi.org/10.1007/s12032-022-01913-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01913-7

Keywords

Navigation