Skip to main content

Advertisement

Log in

A review of effects of atorvastatin in cancer therapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Cancer is one of the most challenging diseases to manage. A sizeable number of researches are done each year to find better diagnostic and therapeutic strategies. At the present time, a package of chemotherapy, targeted therapy, radiotherapy, and immunotherapy is available to cope with cancer cells. Regarding chemo-radiation therapy, low effectiveness and normal tissue toxicity are like barriers against optimal response. To remedy the situation, some agents have been proposed as adjuvants to improve tumor responses. Statins, the known substances for reducing lipid, have shown a considerable capability for cancer treatment. Among them, atorvastatin as a reductase (HMG-CoA) inhibitor might affect proliferation, migration, and survival of cancer cells. Since finding an appropriate adjutant is of great importance, numerous studies have been conducted to precisely unveil antitumor effects of atorvastatin and its associated pathways. In this review, we aim to comprehensively review the most highlighted studies which focus on the use of atorvastatin in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

All the data used in the article is available.

Abbreviations

ATV/AVT/AT:

Atorvastatin

HMG-CoA:

3-hydroxy-3-methylglutaryl coenzyme A

HMGCR:

3-hydroxy-3-methylglutaryl coenzyme A reductase

LDL:

Low-density lipoprotein

HDL:

High-density lipoprotein

VLDL:

Very -low-density lipoprotein

LDL-C:

Low-density lipoprotein cholesterol

TC:

Total cholesterol

TG:

Triglycerides

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

CAT:

Catalase

GSH:

Glutathione

GPx:

Glutathione peroxidase

MDA:

Malondialdehyde

NADPH:

Nicotinamide Adenine Dinucleotide Phosphate

NOX:

Nicotinamide Adenine Dinucleotide Phosphate oxidase

OSA:

Obstructive sleep apnea

COX-2 :

Cyclooxygenase-2

ERK:

Extracellular signal-regulated kinase

MEK:

Mitogen-activated protein kinase kinase

IκBα:

Nuclear factor-kappa B inhibitor alpha

IL-1:

Interleukin-1

TNF-α:

Tumor necrosis factor alpha

apoE/LDL:

Apolipoprotein E /Low-density lipoprotein

CRP:

C-reactive protein

ACS:

Acute coronary syndrome

COPD:

Chronic obstructive pulmonary disease

DM:

Diabetes mellitus

sVCAM‐1:

Soluble vascular cell adhesion molecule‐1

ADMA:

Asymmetrical dimethyl arginine

JNK:

Jun N-terminal kinases

GGPP:

Geranylgeranyldiphosphate

MEV:

Mevalonate

AKT/mTOR:

Protein kinase B /mammalian target of rapamycin

MAPK:

Mitogen-activated protein kinases

NLCs:

Nanostructured lipid carriers

LC3-II:

Light chain 3B-phosphatidylethanolamine conjugate

Bcl-2:

B-cell lymphoma 2

PC:

Prostate cancer

PARP:

Poly ADP ribose polymerase

PGE2:

Prostaglandin E2

MA:

Mannitol

TZB:

Trastuzumab

CCA:

Cholangiocarcinoma

DOX:

Doxorubicin

5-FU:

5-fluorouracil

Hsp70:

Heat shock protein 70

HCC:

Hepatocellular carcinoma

BC:

Breast cancer

MMP2:

Matrix metalloprotease 2

VEGFR:

Vascular endothelial growth factor receptor

PDGFR:

Platelet-derived growth factor receptor

RAS:

Rat sarcoma virus

RAF:

Rapidly accelerated fibrosarcoma

EGFR:

Epidermal growth factor receptor

KRAS:

Kirsten rat sarcoma virus

PIK3:

Phosphoinositide 3-kinases

PTEN:

Phosphatase and Tensin homolog

RhoA:

Ras homolog family member A

ROCK:

Rho‐associated coiled‐coil containing kinase

HDM2:

Human Double Minute-2

mRNA:

Messenger Ribonucleic acid

NBS-1:

Nijmegen Breakage Syndrome-1

TM:

Thrombomodulin

PAI-1:

Plasminogen activator inhibitor-1

Cx43:

Connexin 43

miR-21:

MicroRNA-21

HIF-1:

Hypoxia-Inducible Factor 1

MSH2:

Mismatch repair protein 2

IR:

Ionizing Radiation

BIM:

Bcl-2-like protein 11

TKI:

Tyrosine kinase inhibitor

PT:

Phloretin

MM:

Multiple myeloma

SREBP-2:

Sterol regulatory element-binding protein

γ-TT:

γ-Tocotrienol

CXIB:

Celecoxib

SM:

Silymarin

HCV:

Hepatitis C virus

GTP:

Guanosine triphosphate

References

  1. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011. https://doi.org/10.1126/science.1203543.

    Article  Google Scholar 

  2. Smith RA, Andrews KS, Brooks D, Fedewa SA, Manassaram-Baptiste D, Saslow D, Wender RC. Cancer screening in the United States, 2019: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin. 2019. https://doi.org/10.3322/caac.21557.

    Article  Google Scholar 

  3. Smith RA, Oeffinger KC. The importance of cancer screening. Med Clin North Am. 2020. https://doi.org/10.1016/j.mcna.2020.08.008.

    Article  Google Scholar 

  4. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021. https://doi.org/10.3322/caac.21660.

    Article  Google Scholar 

  5. Hausman DM. What is cancer? Perspect Biol Med. 2019. https://doi.org/10.1353/pbm.2019.0046.

    Article  Google Scholar 

  6. Alizadeh AA, Aranda V, Bardelli A, Blanpain C, Bock C, Borowski C, Caldas C, Califano A, Doherty M, Elsner M, Esteller M, Fitzgerald R, Korbel JO, Lichter P, Mason CE, Navin N, Pe’er D, Polyak K, Roberts CW, Siu L, Snyder A, Stower H, Swanton C, Verhaak RG, Zenklusen JC, Zuber J, Zucman-Rossi J. Toward understanding and exploiting tumor heterogeneity. Nat Med. 2015. https://doi.org/10.1038/nm.3915.

    Article  Google Scholar 

  7. Kentsis A. Why do young people get cancer? Pediatr Blood Cancer. 2020. https://doi.org/10.1002/pbc.28335.

    Article  Google Scholar 

  8. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer? Nat Rev Cancer. 2012. https://doi.org/10.1038/nrc3261.

    Article  Google Scholar 

  9. Arruebo M, Vilaboa N, Sáez-Gutierrez B, Lambea J, Tres A, Valladares M, González-Fernández A. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011. https://doi.org/10.3390/cancers3033279.

    Article  Google Scholar 

  10. Liu YQ, Wang XL, He DH, Cheng YX. Protection against chemotherapy- and radiotherapy-induced side effects: a review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine. 2021. https://doi.org/10.1016/j.phymed.2020.153402.

    Article  Google Scholar 

  11. Ng WL, Huang Q, Liu X, Zimmerman M, Li F, Li CY. Molecular mechanisms involved in tumor repopulation after radiotherapy. Transl Cancer Res. 2013. https://doi.org/10.3978/j.issn.2218-676X.2013.10.03.

    Article  Google Scholar 

  12. Selzer E, Kornek G. Targeted drugs in combination with radiotherapy for the treatment of solid tumors: current state and future developments. Expert Rev Clin Pharmacol. 2013. https://doi.org/10.1586/17512433.2013.841540.

    Article  Google Scholar 

  13. Asghari M, Shaghaghi Z, Farzipour S, Ghasemi A, Hosseinimehr SJ. Radioprotective effect of olanzapine as an anti-psychotic drug against genotoxicity and apoptosis induced by ionizing radiation on human lymphocytes. Mol Biol Rep. 2019. https://doi.org/10.1007/s11033-019-05024-x.

    Article  Google Scholar 

  14. Pouri M, Shaghaghi Z, Ghasemi A, Hosseinimehr SJ. Radioprotective effect of gliclazide as an anti-hyperglycemic agent against genotoxicity induced by ionizing radiation on human lymphocytes. Cardiovasc Hematol Agents Med Chem. 2019. https://doi.org/10.2174/1871525717666190524092918.

    Article  Google Scholar 

  15. Shaghaghi Z, Alvandi M, Nosrati S, Hadei SK. Potential utility of peptides against damage induced by ionizing radiation. Future Oncol. 2021. https://doi.org/10.2217/fon-2020-0577.

    Article  Google Scholar 

  16. Reiss AB, Wirkowski E. Statins in neurological disorders: mechanisms and therapeutic value. Sci World J. 2009. https://doi.org/10.1100/tsw.2009.141.

    Article  Google Scholar 

  17. Ferro D, Parrotto S, Basili S, Alessandri C, Violi F. Simvastatin inhibits the monocyte expression of proinflammatory cytokines in patients with hypercholesterolemia. J Am Coll Cardiol. 2000. https://doi.org/10.1016/s0735-1097(00)00771-3.

    Article  Google Scholar 

  18. Solheim S, Seljeflot I, Arnesen H, Eritsland J, Eikvar L. Reduced levels of TNF alpha in hypercholesterolemic individuals after treatment with pravastatin for 8 weeks. Atherosclerosis. 2001. https://doi.org/10.1016/s0021-9150(00)00725-5.

    Article  Google Scholar 

  19. Zhou Q, Liao JK. Pleiotropic effects of statins-basic research and clinical perspectives. Circ J. 2010;74(5):818–26.

    Article  CAS  Google Scholar 

  20. Hosseinimehr SJ, Ghasemi F, Flahatgar F, Rahmanian N, Ghasemi A, Asgarian-Omran H. Atorvastatin sensitizes breast and lung cancer cells to ionizing radiation. Iran J Pharm Res. 2020. https://doi.org/10.22037/ijpr.2020.15487.13126.

    Article  Google Scholar 

  21. Beckwitt CH, Shiraha K, Wells A. Lipophilic statins limit cancer cell growth and survival, via involvement of Akt signaling. PLoS One. 2018. https://doi.org/10.1371/journal.pone.0197422.

    Article  Google Scholar 

  22. Cai J, Yu X, Zhang B, Zhang H, Fang Y, Liu S, Liu T, Ding X. Atorvastatin improves survival of implanted stem cells in a rat model of renal ischemia-reperfusion injury. Am J Nephrol. 2014. https://doi.org/10.1159/000362623.

    Article  Google Scholar 

  23. Crevar-Sakac M, Vujić Z, Kotur-Stevuljević J, Ivanisević J, Jelić-Ivanović Z, Milenković M, Markelić M, Vujcić Z. Effects of atorvastatin and artichoke leaf tincture on oxidative stress in hypercholesterolemic rats. Vojnosanit Pregl. 2016. https://doi.org/10.2298/vsp140917148c.

    Article  Google Scholar 

  24. Davignon J. Beneficial cardiovascular pleiotropic effects of statins. Circulation. 2004. https://doi.org/10.1161/01.CIR.0000131517.20177.5a.

    Article  Google Scholar 

  25. Jaikumkao K, Pongchaidecha A, Thongnak LO, Wanchai K, Arjinajarn P, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Amelioration of renal inflammation, endoplasmic reticulum stress and apoptosis underlies the protective effect of low dosage of atorvastatin in gentamicin-induced nephrotoxicity. PLoS One. 2016. https://doi.org/10.1371/journal.pone.0164528.

    Article  Google Scholar 

  26. Ramanjaneyulu SV, Trivedi PP, Kushwaha S, Vikram A, Jena GB. Protective role of atorvastatin against doxorubicin-induced cardiotoxicity and testicular toxicity in mice. J Physiol Biochem. 2013. https://doi.org/10.1007/s13105-013-0240-0.

    Article  Google Scholar 

  27. Yang PM, Liu YL, Lin YC, Shun CT, Wu MS, Chen CC. Inhibition of autophagy enhances anticancer effects of atorvastatin in digestive malignancies. Cancer Res. 2010. https://doi.org/10.1158/0008-5472.CAN-10-1626.

    Article  Google Scholar 

  28. Zhang K, He X, Zhou Y, Gao L, Qi Z, Chen J, Gao X. Atorvastatin ameliorates radiation-induced cardiac fibrosis in rats. Radiat Res. 2015. https://doi.org/10.1667/RR14075.1.

    Article  Google Scholar 

  29. Wiklund O, Mattsson-Hultén L, Hurt-Camejo E, Oscarsson J. Effects of simvastatin and atorvastatin on inflammation markers in plasma. J Intern Med. 2002. https://doi.org/10.1046/j.1365-2796.2002.00966.x.

    Article  Google Scholar 

  30. Pal S, Sarkar A, Pal PB, Sil PC. Protective effect of arjunolic acid against atorvastatin induced hepatic and renal pathophysiology via MAPK, mitochondria and ER dependent pathways. Biochimie. 2015. https://doi.org/10.1016/j.biochi.2015.02.016.

    Article  Google Scholar 

  31. Furberg CD. Natural statins and stroke risk. Circulation. 1999. https://doi.org/10.1161/01.cir.99.2.185.

    Article  Google Scholar 

  32. Profumo E, Buttari B, Saso L, Rigano R. Pleiotropic effects of statins in atherosclerotic disease: focus on the antioxidant activity of atorvastatin. Curr Top Med Chem. 2014. https://doi.org/10.2174/1568026614666141203130324.

    Article  Google Scholar 

  33. Oryan A, Kamali A, Moshiri A. Potential mechanisms and applications of statins on osteogenesis: current modalities, conflicts and future directions. J Control Release. 2015. https://doi.org/10.1016/j.jconrel.2015.07.022.

    Article  Google Scholar 

  34. Gazzerro P, Proto MC, Gangemi G, Malfitano AM, Ciaglia E, Pisanti S, Santoro A, Laezza C, Bifulco M. Pharmacological actions of statins: a critical appraisal in the management of cancer. Pharmacol Rev. 2012. https://doi.org/10.1124/pr.111.004994.

    Article  Google Scholar 

  35. Bedi O, Dhawan V, Sharma PL, Kumar P. Pleiotropic effects of statins: new therapeutic targets in drug design. Naunyn Schmiedebergs Arch Pharmacol. 2016. https://doi.org/10.1007/s00210-016-1252-4.

    Article  Google Scholar 

  36. Dulak J, Józkowicz A. Anti-angiogenic and anti-inflammatory effects of statins: relevance to anti-cancer therapy. Curr Cancer Drug Targets. 2005. https://doi.org/10.2174/156800905774932824.

    Article  Google Scholar 

  37. Endres M. Statins and stroke. J Cereb Blood Flow Metab. 2005. https://doi.org/10.1038/sj.jcbfm.9600116.

    Article  Google Scholar 

  38. Hamelin BA, Turgeon J. Hydrophilicity/lipophilicity: relevance for the pharmacology and clinical effects of HMG-CoA reductase inhibitors. Trends Pharmacol Sci. 1998. https://doi.org/10.1016/s0165-6147(97)01147-4.

    Article  Google Scholar 

  39. Kato S, Smalley S, Sadarangani A, Chen-Lin K, Oliva B, Brañes J, Carvajal J, Gejman R, Owen GI, Cuello M. Lipophilic but not hydrophilic statins selectively induce cell death in gynaecological cancers expressing high levels of HMGCoA reductase. J Cell Mol Med. 2010. https://doi.org/10.1111/j.1582-4934.2009.00771.x.

    Article  Google Scholar 

  40. Kim J, Choi EA, Han YE, Lee JW, Kim YS, Kim Y, You HS, Hyun HJ, Kang HT. Association between statin use and all-cause mortality in cancer survivors, based on the Korean health insurance service between 2002 and 2015. Nutr Metab Cardiovasc Dis. 2020. https://doi.org/10.1016/j.numecd.2019.11.002.

    Article  Google Scholar 

  41. Ling Q, Tejada-Simon MV. Statins and the brain: new perspective for old drugs. Prog Neuropsychopharmacol Biol Psychiatry. 2016. https://doi.org/10.1016/j.pnpbp.2015.11.013.

    Article  Google Scholar 

  42. Roth BD. The discovery and development of atorvastatin, a potent novel hypolipidemic agent. Prog Med Chem. 2002. https://doi.org/10.1016/s0079-6468(08)70080-8.

    Article  Google Scholar 

  43. van Leuven SI, Kastelein JJ. Atorvastatin. Expert Opin Pharmacother. 2005. https://doi.org/10.1517/14656566.6.7.1191.

    Article  Google Scholar 

  44. Kawahara T, Nishikawa M, Kawahara C, Inazu T, Sakai K, Suzuki G. Atorvastatin, etidronate, or both in patients at high risk for atherosclerotic aortic plaques: a randomized, controlled trial. Circulation. 2013. https://doi.org/10.1161/CIRCULATIONAHA.113.001534.

    Article  Google Scholar 

  45. Kurogi K, Sugiyama S, Sakamoto K, Tayama S, Nakamura S, Biwa T, Matsui K, Ogawa H; COMPACT-CAD Investigators (2013) Comparison of pitavastatin with atorvastatin in increasing HDL-cholesterol and adiponectin in patients with dyslipidemia and coronary artery disease: the COMPACT-CAD study. J Cardiol. https://doi.org/10.1016/j.jjcc.2013.03.008

  46. Blum CB. Comparison of properties of four inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Am J Cardiol. 1994. https://doi.org/10.1016/0002-9149(94)90626-2.

    Article  Google Scholar 

  47. Malhotra HS, Goa KL. Atorvastatin: an updated review of its pharmacological properties and use in dyslipidaemia. Drugs. 2001. https://doi.org/10.2165/00003495-200161120-00012.

    Article  Google Scholar 

  48. Rackley CE. Monotherapy with HMG-CoA reductase inhibitors and secondary prevention in coronary artery disease. Clin Cardiol. 1996. https://doi.org/10.1002/clc.4960190903.

    Article  Google Scholar 

  49. Jose MA, Anandkumar S, Narmadha MP, Sandeep M. A comparative effect of atorvastatin with other statins in patients of hyperlipidemia. Indian J Pharmacol. 2012. https://doi.org/10.4103/0253-7613.93864.

    Article  Google Scholar 

  50. Wassmann S, Laufs U, Müller K, Konkol C, Ahlbory K, Bäumer AT, Linz W, Böhm M, Nickenig G. Cellular antioxidant effects of atorvastatin in vitro and in vivo. Arterioscler Thromb Vasc Biol. 2002. https://doi.org/10.1161/hq0202.104081.

    Article  Google Scholar 

  51. Sarath TS, Waghe P, Gupta P, Choudhury S, Kannan K, Pillai AH, Harikumar SK, Mishra SK, Sarkar SN. Atorvastatin ameliorates arsenic-induced hypertension and enhancement of vascular redox signaling in rats. Toxicol Appl Pharmacol. 2014. https://doi.org/10.1016/j.taap.2014.08.032.

    Article  Google Scholar 

  52. Chandra J, Samali A, Orrenius S. Triggering and modulation of apoptosis by oxidative stress. Free Radic Biol Med. 2000. https://doi.org/10.1016/s0891-5849(00)00302-6.

    Article  Google Scholar 

  53. Poli G, Leonarduzzi G, Biasi F, Chiarpotto E. Oxidative stress and cell signalling. Curr Med Chem. 2004. https://doi.org/10.2174/0929867043365323.

    Article  Google Scholar 

  54. Pillai CK, Pillai KS. Antioxidants in health. Indian J Physiol Pharmacol. 2002;46:1–5.

    CAS  Google Scholar 

  55. Hosseinimehr SJ. A review of preventive and therapeutic effects of curcumin in patients with cancer. J Clin Excell. 2014;2:50–63.

    Google Scholar 

  56. Andjelkovic M, Buha Djordjevic A, Antonijevic E, Antonijevic B, Stanic M, Kotur-Stevuljevic J, Spasojevic-Kalimanovska V, Jovanovic M, Boricic N, Wallace D, Bulat Z. Toxic effect of acute cadmium and lead exposure in rat blood, liver, and kidney. Int J Environ Res Public Health. 2019. https://doi.org/10.3390/ijerph16020274.

    Article  Google Scholar 

  57. Hormozi M, Mirzaei R, Nakhaee A, Izadi S, Dehghan Haghighi J. The biochemical effects of occupational exposure to lead and cadmium on markers of oxidative stress and antioxidant enzymes activity in the blood of glazers in tile industry. Toxicol Ind Health. 2018. https://doi.org/10.1177/0748233718769526.

    Article  Google Scholar 

  58. Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol. 2004. https://doi.org/10.1038/nri1312.

    Article  Google Scholar 

  59. Zhao W, Robbins ME. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem. 2009. https://doi.org/10.2174/092986709787002790.

    Article  Google Scholar 

  60. Zhou S, Zhao P, Li Y, Deng T, Tian L, Li H. Renoprotective effect of atorvastatin on STZ-diabetic rats through attenuating kidney-associated dysmetabolism. Eur J Pharmacol. 2014. https://doi.org/10.1016/j.ejphar.2014.06.055.

    Article  Google Scholar 

  61. Violi F, Carnevale R, Calvieri C, Nocella C, Falcone M, Farcomeni A, Taliani G, Cangemi R; SIXTUS study group (2015) Nox2 up-regulation is associated with an enhanced risk of atrial fibrillation in patients with pneumonia. Thorax. https://doi.org/10.1136/thoraxjnl-2015-207178

  62. Goettsch C, Goettsch W, Muller G, Seebach J, Schnittler HJ, Morawietz H. Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells. Biochem Biophys Res Commun. 2009. https://doi.org/10.1016/j.bbrc.2009.01.107.

    Article  Google Scholar 

  63. Dhesi S, Chu MP, Blevins G, Paterson I, Larratt L, Oudit GY, Kim DH. Cyclophosphamide-induced cardiomyopathy: a case report, review, and recommendations for management. J Investig Med High Impact Case Rep. 2013. https://doi.org/10.1177/2324709613480346.

    Article  Google Scholar 

  64. Kardes O, Civi S, Tufan K, Oyar EO, Omeroglu S, Aykol S. Effects of atorvastatin on experimental spinal cord ischemia-reperfusion injury in rabbits. Turk Neurosurg. 2017. https://doi.org/10.5137/1019-5149.JTN.16627-15.2.

    Article  Google Scholar 

  65. Pignatelli P, Carnevale R, Pastori D, Cangemi R, Napoleone L, Bartimoccia S, Nocella C, Basili S, Violi F. Immediate antioxidant and antiplatelet effect of atorvastatin via inhibition of Nox2. Circulation. 2012. https://doi.org/10.1161/CIRCULATIONAHA.112.095554.

    Article  Google Scholar 

  66. Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, Kitakaze M, Liao JK. Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest. 2001. https://doi.org/10.1172/JCI13350.

    Article  Google Scholar 

  67. Zhang XB, Cheng HJ, Yuan YT, Chen Y, Chen YY, Chiu KY, Zeng HQ. Atorvastatin attenuates intermittent hypoxia-induced myocardial oxidative stress in a mouse obstructive sleep apnea model. Aging (Albany NY). 2021. https://doi.org/10.18632/aging.203339.

    Article  Google Scholar 

  68. Ghoreshi ZA, Kabirifar R, Khodarahmi A, Karimollah A, Moradi A. The preventive effect of atorvastatin on liver fibrosis in the bile duct ligation rats via antioxidant activity and down-regulation of Rac1 and NOX1. Iran J Basic Med Sci. 2020. https://doi.org/10.22038/IJBMS.2019.33663.8047.

    Article  Google Scholar 

  69. Zhou Q, Liao JK. Pleiotropic effects of statins. Basic research and clinical perspectives. Circ J. 2010. https://doi.org/10.1253/circj.cj-10-0110.

    Article  Google Scholar 

  70. Shao Q, Shen LH, Hu LH, Pu J, Jing Q, He B. Atorvastatin suppresses inflammatory response induced by oxLDL through inhibition of ERK phosphorylation, IκBα degradation, and COX-2 expression in murine macrophages. J Cell Biochem. 2012;113:611–8.

    Article  CAS  Google Scholar 

  71. Fraker D, Alexander H, Pass H. Biologic therapy with TNF: systemic administration and isolation-perfusion. In: De Vita V, Hellman S, Rosenberg S, editors. Biologic therapy of cancer: principles and practice. Philadelphia: Lippincott Co.; 1995. p. 329–45.

    Google Scholar 

  72. Nachtigal P, Pospisilova N, Jamborova G, Pospechova K, Solichova D, Andrys C, Zdansky P, Micuda S, Semecky V. Atorvastatin has hypolipidemic and anti-inflammatory effects in apoE/LDL receptor-double-knockout mice. Life Sci. 2008. https://doi.org/10.1016/j.lfs.2008.01.006.

    Article  Google Scholar 

  73. Hoving S, Heeneman S, Gijbels MJ, te Poele JA, Pol JF, Gabriels K, Russell NS, Daemen MJ, Stewart FA. Anti-inflammatory and anti-thrombotic intervention strategies using atorvastatin, clopidogrel and knock-down of CD40L do not modify radiation-induced atherosclerosis in ApoE null mice. Radiother Oncol. 2011. https://doi.org/10.1016/j.radonc.2011.09.019.

    Article  Google Scholar 

  74. Jain MK, Ridker PM. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005. https://doi.org/10.1038/nrd1901.

    Article  Google Scholar 

  75. Sun Y, Ji Q, Mei Y, Wang X, Feng J, Cai J, Chi L. Role of preoperative atorvastatin administration in protection against postoperative atrial fibrillation following conventional coronary artery bypass grafting. Int Heart J. 2011. https://doi.org/10.1536/ihj.52.7.

    Article  Google Scholar 

  76. Zheng Z, Jayaram R, Jiang L, Emberson J, Zhao Y, Li Q, Du J, Guarguagli S, Hill M, Chen Z, Collins R, Casadei B. Perioperative rosuvastatin in cardiac surgery. N Engl J Med. 2016. https://doi.org/10.1056/NEJMoa1507750.

    Article  Google Scholar 

  77. Singh P, Emami H, Subramanian S, Maurovich-Horvat P, Marincheva-Savcheva G, Medina HM, Abdelbaky A, Alon A, Shankar SS, Rudd JH, Fayad ZA, Hoffmann U, Tawakol A. Coronary plaque morphology and the anti-inflammatory impact of atorvastatin: a multicenter 18F-fluorodeoxyglucose positron emission tomographic/computed tomographic study. Circ Cardiovasc Imaging. 2016. https://doi.org/10.1161/CIRCIMAGING.115.004195.

    Article  Google Scholar 

  78. Blanco-Colio LM, Martín-Ventura JL, de Teresa E, Farsang C, Gaw A, Gensini G, Leiter LA, Langer A, Martineau P, Egido J; ACTFAST investigators (2008) Atorvastatin decreases elevated soluble CD40L in subjects at high cardiovascular risk. Atorvastatin on inflammatory markers study: a substudy of ACTFAST. Kidney Int Suppl. https://doi.org/10.1038/ki.2008.514

  79. Macin SM, Perna ER, Farías EF, Franciosi V, Cialzeta JR, Brizuela M, Medina F, Tajer C, Doval H, Badaracco R. Atorvastatin has an important acute anti-inflammatory effect in patients with acute coronary syndrome: results of a randomized, double-blind, placebo-controlled study. Am Heart J. 2005. https://doi.org/10.1016/j.ahj.2004.07.041.

    Article  Google Scholar 

  80. Thomson NC, Charron CE, Chaudhuri R, Spears M, Ito K, McSharry C. Atorvastatin in combination with inhaled beclometasone modulates inflammatory sputum mediators in smokers with asthma. Pulm Pharmacol Ther. 2015;31:1–8. https://doi.org/10.1016/j.pupt.2015.01.001.

    Article  CAS  Google Scholar 

  81. Liu M, Wang F, Wang Y, Jin R. Atorvastatin improves endothelial function and cardiac performance in patients with dilated cardiomyopathy: the role of inflammation. Cardiovasc Drugs Ther. 2009. https://doi.org/10.1007/s10557-009-6186-3.

    Article  Google Scholar 

  82. Arad Y, Spadaro LA, Roth M, Newstein D, Guerci AD. Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: the St. Francis Heart Study randomized clinical trial. J Am Coll Cardiol. 2005. https://doi.org/10.1016/j.jacc.2005.02.089.

    Article  Google Scholar 

  83. Cadirci E, Oral A, Odabasoglu F, Kilic C, Coskun K, Halici Z, Suleyman H, Nuri Keles O, Unal B. Atorvastatin reduces tissue damage in rat ovaries subjected to torsion and detorsion: biochemical and histopathologic evaluation. Naunyn Schmiedebergs Arch Pharmacol. 2010. https://doi.org/10.1007/s00210-010-0504-y.

    Article  Google Scholar 

  84. Castro PF, Miranda R, Verdejo HE, Greig D, Gabrielli LA, Alcaino H, Chiong M, Bustos C, Garcia L, Mellado R, Vukasovic JL, Godoy I, Lavandero S. Pleiotropic effects of atorvastatin in heart failure: role in oxidative stress, inflammation, endothelial function, and exercise capacity. J Heart Lung Transplant. 2008. https://doi.org/10.1016/j.healun.2008.01.012.

    Article  Google Scholar 

  85. Zhang S, Zhang Y, Ahsan MZ, Yuan Y, Liu G, Han X, Zhang J, Zhao X, Bai B, Li Y. Atorvastatin attenuates cold-induced hypertension by preventing gut barrier injury. J Cardiovasc Pharmacol. 2019. https://doi.org/10.1097/FJC.0000000000000690.

    Article  Google Scholar 

  86. Fuentes-Orozco C, Garcia-Salazar SJ, Gómez-Navarro B, González-Espinoza E, Zepeda-González A, Ramírez-Robles JN, Castañeda-Espinoza R, Yáñez-Sánchez I, Gálvez-Gastelum FJ, Cervantes-Guevara G, Cervantes-Cardona GA, Contreras-Hernández GI, Pérez-Landeros JE, García-Martinez D, González-Ojeda A. Anti-inflammatory effect of atorvastatin on the kidney graft of living donor transplants. Ann Transplant. 2018. https://doi.org/10.12659/AOT.908521.

    Article  Google Scholar 

  87. Mroz RM, Lisowski P, Tycinska A, Bierla J, Trzeciak PZ, Minarowski L, Milewski R, Lisowska A, Boros P, Sobkowicz B, Duszewska AM, Chyczewska E, Musial WJ, MacNee W. Anti-inflammatory effects of atorvastatin treatment in chronic obstructive pulmonary disease. A controlled pilot study. J Physiol Pharmacol. 2015;66:111–28.

    CAS  Google Scholar 

  88. Khodayar MJ, Kiani M, Hemmati AA, Rezaie A, Zerafatfard MR, Rashidi Nooshabadi MR, Goudarzi M. The preventive effect of atorvastatin on paraquat-induced pulmonary fibrosis in the rats. Adv Pharm Bull. 2014. https://doi.org/10.5681/apb.2014.050.

    Article  Google Scholar 

  89. Tousoulis D, Antoniades C, Vasiliadou C, Kourtellaris P, Koniari K, Marinou K, Charakida M, Ntarladimas I, Siasos G, Stefanadis C. Effects of atorvastatin and vitamin C on forearm hyperaemic blood flow, asymmentrical dimethylarginine levels and the inflammatory process in patients with type 2 diabetes mellitus. Heart. 2007. https://doi.org/10.1136/hrt.2006.093112.

    Article  Google Scholar 

  90. Baluna RG, Eng TY, Thomas CR. Adhesion molecules in radiotherapy. Radiat Res. 2006. https://doi.org/10.1667/RR0380.1.

    Article  Google Scholar 

  91. Furuta Y, Hunter N, Barkley T, Hall E, Milas L. Increase in radioresponse of murine tumors by treatment with indomethacin. Cancer Res. 1988;48:3008–13.

    CAS  Google Scholar 

  92. Hallahan D, Kuchibhotla J, Wyble C. Cell adhesion molecules mediate radiation-induced leukocyte adhesion to the vascular endothelium. Cancer Res. 1996;56:5150–5.

    CAS  Google Scholar 

  93. Hallahan DE, Virudachalam S. Accumulation of P-selectin in the lumen of irradiated blood vessels. Radiat Res. 1999;152:6–13.

    Article  CAS  Google Scholar 

  94. Hong JH, Chiang CS, Campbell IL, Sun JR, Withers HR, McBride WH. Induction of acute phase gene expression by brain irradiation. Int J Radiat Oncol Biol Phys. 1995. https://doi.org/10.1016/0360-3016(95)00279-8.

    Article  Google Scholar 

  95. Richter KK, Fink LM, Hughes BM, Sung CC, Hauer-Jensen M. Is the loss of endothelial thrombomodulin involved in the mechanism of chronicity in late radiation enteropathy? Radiother Oncol. 1997. https://doi.org/10.1016/s0167-8140(97)00063-7.

    Article  Google Scholar 

  96. Rubin P, Johnston CJ, Williams JP, McDonald S, Finkelstein JN. A perpetual cascade of cytokines postirradiation leads to pulmonary fibrosis. Int J Radiat Oncol Biol Phys. 1995. https://doi.org/10.1016/0360-3016(95)00095-G.

    Article  Google Scholar 

  97. Wondergem J, Wedekind LE, Bart CI, Chin A, van der Laarse A, Beekhuizen H. Irradiation of mechanically-injured human arterial endothelial cells leads to increased gene expression and secretion of inflammatory and growth promoting cytokines. Atherosclerosis. 2004. https://doi.org/10.1016/j.atherosclerosis.2004.02.018.

    Article  Google Scholar 

  98. He Z, Yuan J, Qi P, Zhang L, Wang Z. Atorvastatin induces autophagic cell death in prostate cancer cells in vitro. Mol Med Rep. 2015. https://doi.org/10.3892/mmr.2015.3334.

    Article  Google Scholar 

  99. Kang M, Jeong CW, Ku JH, Kwak C, Kim HH. Inhibition of autophagy potentiates atorvastatin-induced apoptotic cell death in human bladder cancer cells in vitro. Int J Mol Sci. 2014. https://doi.org/10.3390/ijms15058106.

    Article  Google Scholar 

  100. Alarcon Martinez T, Zeybek ND, Müftüoğlu S. Evaluation of the cytotoxic and autophagic effects of atorvastatin on MCF-7 breast cancer cells. Balkan Med J. 2018. https://doi.org/10.4274/balkanmedj.2017.0604.

    Article  Google Scholar 

  101. Liang Z, Li W, Liu J, Li J, He F, Jiang Y, Yang L, Li P, Wang B, Wang Y, Ren Y, Yang J, Luo Z, Vaziri C, Liu P. Simvastatin suppresses the DNA replication licensing factor MCM7 and inhibits the growth of tamoxifen-resistant breast cancer cells. Sci Rep. 2017. https://doi.org/10.1038/srep41776.

    Article  Google Scholar 

  102. Liu H, Liang SL, Kumar S, Weyman CM, Liu W, Zhou A. Statins induce apoptosis in ovarian cancer cells through activation of JNK and enhancement of Bim expression. Cancer Chemother Pharmacol. 2009. https://doi.org/10.1007/s00280-008-0830-7.

    Article  Google Scholar 

  103. Sánchez CA, Rodríguez E, Varela E, Zapata E, Páez A, Massó FA, Montaño LF, Lóopez-Marure R. Statin-induced inhibition of MCF-7 breast cancer cell proliferation is related to cell cycle arrest and apoptotic and necrotic cell death mediated by an enhanced oxidative stress. Cancer Invest. 2008. https://doi.org/10.1080/07357900701874658.

    Article  Google Scholar 

  104. Toepfer N, Childress C, Parikh A, Rukstalis D, Yang W. Atorvastatin induces autophagy in prostate cancer PC3 cells through activation of LC3 transcription. Cancer Biol Ther. 2011. https://doi.org/10.4161/cbt.12.8.15978.

    Article  Google Scholar 

  105. Warita K, Warita T, Beckwitt CH, Schurdak ME, Vazquez A, Wells A, Oltvai ZN. Statin-induced mevalonate pathway inhibition attenuates the growth of mesenchymal-like cancer cells that lack functional E-cadherin mediated cell cohesion. Sci Rep. 2014. https://doi.org/10.1038/srep07593.

    Article  Google Scholar 

  106. Jones HM, Fang Z, Sun W, Clark LH, Stine JE, Tran AQ, Sullivan SA, Gilliam TP, Zhou C, Bae-Jump VL. Atorvastatin exhibits anti-tumorigenic and anti-metastatic effects in ovarian cancer in vitro. Am J Cancer Res. 2017;7(12):2478–90 (Erratum in: Am J Cancer Res. 2018;8:915).

    CAS  Google Scholar 

  107. Gambhire VM, Salunkhe SM, Gambhire MS. Atorvastatin-loaded lipid nanoparticles: antitumor activity studies on MCF-7 breast cancer cells. Drug Dev Ind Pharm. 2018. https://doi.org/10.1080/03639045.2018.1492605.

    Article  Google Scholar 

  108. Beckwitt CH, Clark AM, Ma B, Whaley D, Oltvai ZN, Wells A. Statins attenuate outgrowth of breast cancer metastases. Br J Cancer. 2018. https://doi.org/10.1038/s41416-018-0267-7.

    Article  Google Scholar 

  109. Hu MB, Zhang JW, Gao JB, Qi YW, Gao Y, Xu L, Ma Y, Wei ZZ. Atorvastatin induces autophagy in MDA-MB-231 breast cancer cells. Ultrastruct Pathol. 2018. https://doi.org/10.1080/01913123.2018.1522406.

    Article  Google Scholar 

  110. Wang Z, Zhang L, Wan Z, He Y, Huang H, Xiang H, Wu X, Zhang K, Liu Y, Goodin S, Du Z, Zheng X. Atorvastatin and caffeine in combination regulates apoptosis, migration, invasion and tumorspheres of prostate cancer cells. Pathol Oncol Res. 2020. https://doi.org/10.1007/s12253-018-0415-7.

    Article  Google Scholar 

  111. Cai S, Chen Q, Xu Y, Zhuang Q, Ji S. Atorvastatin inhibits pancreatic cancer cells proliferation and invasion likely by suppressing neurotrophin receptor signaling. Transl Cancer Res. 2020. https://doi.org/10.21037/tcr.2020.01.27.

    Article  Google Scholar 

  112. Sheng B, Song Y, Zhang J, Li R, Wang Z, Zhu X. Atorvastatin suppresses the progression of cervical cancer via regulation of autophagy. Am J Transl Res. 2020;12:5252–68.

    CAS  Google Scholar 

  113. Cai S, Gao Z. Atorvastatin inhibits proliferation and promotes apoptosis of colon cancer cells via COX-2/PGE2/β-catenin pathway. J BUON. 2021;26:1219–25.

    Google Scholar 

  114. Tulbah AS, Gamal A. Design and characterization of atorvastatin dry powder formulation as a potential lung cancer treatment. Saudi Pharm J. 2021. https://doi.org/10.1016/j.jsps.2021.11.002.

    Article  Google Scholar 

  115. Abolghasemi R, Ebrahimi-Barough S, Bahrami N, Ai J. Atorvastatin inhibits viability and migration of MCF7 breast cancer cells. Asian Pac J Cancer Prev. 2022. https://doi.org/10.31557/APJCP.2022.23.3.867.

    Article  Google Scholar 

  116. Abolghasemi R, Ebrahimi-Barough S, Mohamadnia A, Ai J. Synergistic inhibitory effect of human umbilical cord matrix mesenchymal stem cells-conditioned medium and atorvastatin on MCF7 cancer cells viability and migration. Cell Tissue Bank. 2022. https://doi.org/10.1007/s10561-021-09984-y.

    Article  Google Scholar 

  117. Parada B, Reis F, Pinto Â, Sereno J, Xavier-Cunha M, Neto P, Rocha-Pereira P, Mota A, Figueiredo A, Teixeira F. Chemopreventive efficacy of Atorvastatin against nitrosamine-induced rat bladder cancer: antioxidant, anti-proliferative and anti-inflammatory properties. Int J Mol Sci. 2012. https://doi.org/10.3390/ijms13078482.

    Article  Google Scholar 

  118. Lee S, Lee HJ, Kang H, Kim EH, Lim YC, Park H, Lim SM, Lee YJ, Kim JM, Kim JS. Trastuzumab induced chemobrain, atorvastatin rescued chemobrain with enhanced anticancer effect and without hair loss-side effect. J Clin Med. 2019. https://doi.org/10.3390/jcm8020234.

    Article  Google Scholar 

  119. Bao H, Zheng N, Li Z, Zhi Y. Synergistic effect of tangeretin and atorvastatin for colon cancer combination therapy: targeted delivery of these dual drugs using RGD peptide decorated nanocarriers. Drug Des Devel Ther. 2020. https://doi.org/10.2147/DDDT.S256636.

    Article  Google Scholar 

  120. Kitagawa K, Moriya K, Kaji K, Saikawa S, Sato S, Nishimura N, Namisaki T, Akahane T, Mitoro A, Yoshiji H. Atorvastatin augments gemcitabine-mediated anti-cancer effects by inhibiting yes-associated protein in human cholangiocarcinoma cells. Int J Mol Sci. 2020. https://doi.org/10.3390/ijms21207588.

    Article  Google Scholar 

  121. El-Khashab IH. Antiangiogenic and proapoptotic activities of atorvastatin and ganoderma lucidum in tumor mouse model via VEGF and caspase-3 pathways. Asian Pac J Cancer Prev. 2021. https://doi.org/10.31557/APJCP.2021.22.4.1095.

    Article  Google Scholar 

  122. Wang SP, Zhou HJ, Chen XP, Ren GY, Ruan XX, Zhang Y, Zhang RL, Chen J. Loss of expression of Kruppel-like factor 6 in primary hepatocellular carcinoma and hepatoma cell lines. J Exp Clin Cancer Res. 2007;26:117–24.

    Google Scholar 

  123. Chanchevalap S, Nandan MO, McConnell BB, Charrier L, Merlin D, Katz JP, Yang VW. Kruppel-like factor 5 is an important mediator for lipopolysaccharide-induced proinflammatory response in intestinal epithelial cells. Nucleic Acids Res. 2006. https://doi.org/10.1093/nar/gkl014.

    Article  Google Scholar 

  124. Mukai S, Hiyama T, Tanaka S, Yoshihara M, Arihiro K, Chayama K. Involvement of Kruppel-like factor 6 (KLF6) mutation in the development of nonpolypoid colorectal carcinoma. World J Gastroenterol. 2007. https://doi.org/10.3748/wjg.v13.i29.3932.

    Article  Google Scholar 

  125. Velarde MC, Zeng Z, McQuown JR, Simmen FA, Simmen RC. Kruppel-like factor 9 is a negative regulator of ligand-dependent estrogen receptor alpha signaling in Ishikawa endometrial adenocarcinoma cells. Mol Endocrinol. 2007. https://doi.org/10.1210/me.2007-0242.

    Article  Google Scholar 

  126. Feldt M, Bjarnadottir O, Kimbung S, Jirström K, Bendahl PO, Veerla S, Grabau D, Hedenfalk I, Borgquist S. Statin-induced anti-proliferative effects via cyclin D1 and p27 in a window-of-opportunity breast cancer trial. J Transl Med. 2015. https://doi.org/10.1186/s12967-015-0486-0.

    Article  Google Scholar 

  127. Tamburrino D, Crippa S, Partelli S, Archibugi L, Arcidiacono PG, Falconi M, Capurso G. Statin use improves survival in patients with pancreatic ductal adenocarcinoma: a meta-analysis. Dig Liver Dis. 2020. https://doi.org/10.1016/j.dld.2020.01.008.

    Article  Google Scholar 

  128. Barnes TA, Amir E, Templeton AJ, Gomez-Garcia S, Navarro B, Seruga B, Ocana A. Efficacy, safety, tolerability and price of newly approved drugs in solid tumors. Cancer Treat Rev. 2017. https://doi.org/10.1016/j.ctrv.2017.03.011.

    Article  Google Scholar 

  129. DeVita VT Jr, Chu E. A history of cancer chemotherapy. Cancer Res. 2008. https://doi.org/10.1158/0008-5472.CAN-07-6611.

    Article  Google Scholar 

  130. Raymond E. Les médicaments chimioprotecteurs. Mécanismes d’action et applications cliniques [Chemoprotectors. Mechanisms of action and clinical applications]. Rev Med Intern. 1996. https://doi.org/10.1016/0248-8663(96)88125-2.

    Article  Google Scholar 

  131. Du X, Li D, Wang G, Fan Y, Li N, Chai L, Li G, Li J. Chemoprotective effect of atorvastatin against benzo(a)pyrene-induced lung cancer via the inhibition of oxidative stress and inflammatory parameters. Ann Transl Med. 2021. https://doi.org/10.21037/atm-20-7770 (Erratum in: Ann Transl Med. 2021 Jul;9(14):1214.).

    Article  Google Scholar 

  132. Tu Q, Cao H, Zhong W, Ding B, Tang X. Atorvastatin protects against cerebral ischemia/reperfusion injury through anti-inflammatory and antioxidant effects. Neural Regen Res. 2014;9(3):268–75. https://doi.org/10.4103/1673-5374.128220.

    Article  CAS  Google Scholar 

  133. El-Moselhy MA, El-Sheikh AA. Protective mechanisms of atorvastatin against doxorubicin-induced hepato-renal toxicity. Biomed Pharmacother. 2014. https://doi.org/10.1016/j.biopha.2013.09.001.

    Article  Google Scholar 

  134. Mounier NM, Wahdan SA, Gad AM, Azab SS. Role of inflammatory, oxidative, and ER stress signaling in the neuroprotective effect of atorvastatin against doxorubicin-induced cognitive impairment in rats. Naunyn Schmiedebergs Arch Pharmacol. 2021. https://doi.org/10.1007/s00210-021-02081-7.

    Article  Google Scholar 

  135. Campos MI, Vieira WD, Campos CN, Aarestrup FM, Aarestrup BJ. Atorvastatin and trans-caryophyllene for the prevention of leukopenia in an experimental chemotherapy model in Wistar rats. Mol Clin Oncol. 2015. https://doi.org/10.3892/mco.2015.544.

    Article  Google Scholar 

  136. Hamzeh M, Hosseinimehr SJ, Khalatbary AR, Mohammadi HR, Dashti A, Amiri FT. Atorvastatin mitigates cyclophosphamide-induced hepatotoxicity via suppression of oxidative stress and apoptosis in rat model. Res Pharm Sci. 2018. https://doi.org/10.4103/1735-5362.236837.

    Article  Google Scholar 

  137. Hamzeh M, Hosseinimehr SJ, Mohammadi HR, Yaghubi Beklar S, Dashti A, Talebpour Amiri F. Atorvastatin attenuates the ovarian damage induced by cyclophosphamide in rat: an experimental study. Int J Reprod Biomed. 2018;16:323–34.

    CAS  Google Scholar 

  138. Gao G, Jiang S, Ge L, Zhang S, Zhai C, Chen W, Sui S. Atorvastatin improves doxorubicin-induced cardiac dysfunction by modulating Hsp70, Akt, and MAPK signaling pathways. J Cardiovasc Pharmacol. 2019. https://doi.org/10.1097/FJC.0000000000000646.

    Article  Google Scholar 

  139. Karami E, Goodarzi Z, Ghanbari A, Bandegi AR, Yosefi S, Dehdashti A. In vivo antioxidant and kidney protective potential of Atorvastatin against cadmium chloride-induced kidney injury in male Wistar rat. J Toxicol Environ Health. 2022;15:1025–36.

    CAS  Google Scholar 

  140. Zamani E, Mohammadbagheri M, Fallah M, Shaki F. Atorvastatin attenuates ethanol-induced hepatotoxicity via antioxidant and anti-inflammatory mechanisms. Res Pharm Sci. 2017. https://doi.org/10.4103/1735-5362.212049.

    Article  Google Scholar 

  141. Bertolini P, Lassalle M, Mercier G, Raquin MA, Izzi G, Corradini N, Hartmann O. Platinum compound-related ototoxicity in children: long-term follow-up reveals continuous worsening of hearing loss. J Pediatr Hematol Oncol. 2004;26:649–55.

    Article  Google Scholar 

  142. Coradini PP, Cigana L, Selistre SG, Rosito LS, Brunetto AL. Ototoxicity from cisplatin therapy in childhood cancer. J Pediatr Hematol Oncol. 2007. https://doi.org/10.1097/MPH.0b013e318059c220.

    Article  Google Scholar 

  143. Frisina RD, Wheeler HE, Fossa SD, Kerns SL, Fung C, Sesso HD, Monahan PO, Feldman DR, Hamilton R, Vaughn DJ, Beard CJ, Budnick A, Johnson EM, Ardeshir-Rouhani-Fard S, Einhorn LH, Lipshultz SE, Dolan ME, Travis LB. Comprehensive audiometric analysis of hearing impairment and tinnitus after cisplatin-based chemotherapy in survivors of adult-onset cancer. J Clin Oncol. 2016. https://doi.org/10.1200/JCO.2016.66.8822.

    Article  Google Scholar 

  144. Knight KR, Chen L, Freyer D, Aplenc R, Bancroft M, Bliss B, Dang H, Gillmeister B, Hendershot E, Kraemer DF, Lindenfeld L, Meza J, Neuwelt EA, Pollock BH, Sung L. Group-Wide, Prospective Study of Ototoxicity Assessment in Children Receiving Cisplatin Chemotherapy (ACCL05C1): A Report From the Children’s Oncology Group. J Clin Oncol. 2017. https://doi.org/10.1200/JCO.2016.69.2319.

    Article  Google Scholar 

  145. Marnitz S, Schermeyer L, Dommerich S, Köhler C, Olze H, Budach V, Martus P. Age-corrected hearing loss after chemoradiation in cervical cancer patients. Strahlenther Onkol. 2018. https://doi.org/10.1007/s00066-018-1347-6.

    Article  Google Scholar 

  146. Fernandez KA, Allen P, Campbell M, Page B, Townes T, Li CM, Cheng H, Garrett J, Mulquin M, Clements A, Mulford D, Ortiz C, Brewer C, Dubno JR, Newlands S, Schmitt NC, Cunningham LL. Atorvastatin is associated with reduced cisplatin-induced hearing loss. J Clin Invest. 2021. https://doi.org/10.1172/JCI142616.

    Article  Google Scholar 

  147. Guo L, Zheng J, Zeng H, Zhang Z, Shao G. Atorvastatin potentiates the chemosensitivity of human liver cancer cells to cisplatin via downregulating YAP1. Oncol Lett. 2021. https://doi.org/10.3892/ol.2020.12343.

    Article  Google Scholar 

  148. Peng P, Wei W, Long C, Li J. Atorvastatin augments temozolomide’s efficacy in glioblastoma via prenylation-dependent inhibition of Ras signaling. Biochem Biophys Res Commun. 2017. https://doi.org/10.1016/j.bbrc.2017.05.147.

    Article  Google Scholar 

  149. Zhou TY, Zhuang LH, Hu Y, Zhou YL, Lin WK, Wang DD, Wan ZQ, Chang LL, Chen Y, Ying MD, Chen ZB, Ye S, Lou JS, He QJ, Zhu H, Yang B. Inactivation of hypoxia-induced YAP by statins overcomes hypoxic resistance tosorafenib in hepatocellular carcinoma cells. Sci Rep. 2016. https://doi.org/10.1038/srep30483.

    Article  Google Scholar 

  150. Murtola TJ, Visvanathan K, Artama M, Vainio H, Pukkala E. Statin use and breast cancer survival: a nationwide cohort study from Finland. PLoS One. 2014. https://doi.org/10.1371/journal.pone.0110231.

    Article  Google Scholar 

  151. Ishikawa T, Hosaka YZ, Beckwitt C, Wells A, Oltvai ZN, Warita K. Concomitant attenuation of HMG-CoA reductase expression potentiates the cancer cell growth-inhibitory effect of statins and expands their efficacy in tumor cells with epithelial characteristics. Oncotarget. 2018. https://doi.org/10.18632/oncotarget.25448.

    Article  Google Scholar 

  152. Fromigué O, Hamidouche Z, Marie PJ. Statin-induced inhibition of 3-hydroxy-3-methyl glutaryl coenzyme a reductase sensitizes human osteosarcoma cells to anticancer drugs. J Pharmacol Exp Ther. 2008. https://doi.org/10.1124/jpet.108.136127.

    Article  Google Scholar 

  153. Henslee AB, Steele TA. Combination statin and chemotherapy inhibits proliferation and cytotoxicity of an aggressive natural killer cell leukemia. Biomark Res. 2018. https://doi.org/10.1186/s40364-018-0140-0.

    Article  Google Scholar 

  154. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008. https://doi.org/10.1158/1535-7163.MCT-08-0013.

    Article  Google Scholar 

  155. Barber TD, Vogelstein B, Kinzler KW, Velculescu VE. Somatic mutations of EGFR in colorectal cancers and glioblastomas. N Engl J Med. 2004. https://doi.org/10.1056/NEJM200412303512724.

    Article  Google Scholar 

  156. Rich JN, Reardon DA, Peery T, Dowell JM, Quinn JA, Penne KL, Wikstrand CJ, Van Duyn LB, Dancey JE, McLendon RE, Kao JC, Stenzel TT, Ahmed Rasheed BK, Tourt-Uhlig SE, Herndon JE 2nd, Vredenburgh JJ, Sampson JH, Friedman AH, Bigner DD, Friedman HS. Phase II trial of gefitinib in recurrent glioblastoma. J Clin Oncol. 2004. https://doi.org/10.1200/JCO.2004.08.110.

    Article  Google Scholar 

  157. Chen J, Bi H, Hou J, Zhang X, Zhang C, Yue L, Wen X, Liu D, Shi H, Yuan J, Liu J, Liu B. Atorvastatin overcomes gefitinib resistance in KRAS mutant human non-small cell lung carcinoma cells. Cell Death Dis. 2013. https://doi.org/10.1038/cddis.2013.312.

    Article  Google Scholar 

  158. Plunkett W, Huang P, Xu YZ, Heinemann V, Grunewald R, Gandhi V. Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol. 1995;22:3–10.

    CAS  Google Scholar 

  159. Kawashiri T, Tokunaga A, Kobayashi D, Shimazoe T. Anti-tumor activities of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors and bisphosphonates in pancreatic cell lines which show poor responses to gemcitabine. Biol Pharm Bull. 2020. https://doi.org/10.1248/bpb.b19-00435.

    Article  Google Scholar 

  160. Arun BK, Gong Y, Liu D, Litton JK, Gutierrez-Barrera AM, Jack Lee J, Vornik L, Ibrahim NK, Cornelison T, Hortobagyi GN, Heckman-Stoddard BM, Koenig KB, Alvarez RR, Murray JL, Valero V, Lippman SM, Brown P, Sneige N. Phase I biomarker modulation study of atorvastatin in women at increased risk for breast cancer. Breast Cancer Res Treat. 2016. https://doi.org/10.1007/s10549-016-3849-1.

    Article  Google Scholar 

  161. Borgquist S, Bjarnadottir O, Kimbung S, Ahern TP. Statins: a role in breast cancer therapy? J Intern Med. 2018. https://doi.org/10.1111/joim.12806.

    Article  Google Scholar 

  162. Ji Y, Rounds T, Crocker A, Sussman B, Hovey RC, Kingsley F, Muss HB, Garber JE, Wood ME. The effect of atorvastatin on breast cancer biomarkers in high-risk women. Cancer Prev Res (Phila). 2016. https://doi.org/10.1158/1940-6207.CAPR-15-0300.

    Article  Google Scholar 

  163. Farzipour S, Shaghaghi Z, Raeispour M, Alvandi M, Jalali F, Yazdi A. Evaluation the effect of chelating arms and carrier agents in radiotoxicity of TAT agents. Curr Radiopharm. 2022. https://doi.org/10.2174/1874471015666220510161047.

    Article  Google Scholar 

  164. Shaghaghi Z, Polgardani NZ, Abbasi S, Albooyeh H, Dastranj L, Farzipour S, Alvandi M. Etodolac enhances the radiosensitivity of irradiated HT-29 human colorectal cancer cells. Curr Radiopharm. 2022. https://doi.org/10.2174/1874471015666220321143139.

    Article  Google Scholar 

  165. Citrin DE. Recent Developments in Radiotherapy. N Engl J Med. 2017. https://doi.org/10.1056/NEJMra1608986.

    Article  Google Scholar 

  166. Saenger EL. Radiation accidents. Ann Emerg Med. 1986. https://doi.org/10.1016/s0196-0644(86)80130-5.

    Article  Google Scholar 

  167. Barbalata CI, Tefas LR, Achim M, Tomuta I, Porfire AS. Statins in risk-reduction and treatment of cancer. World J Clin Oncol. 2020. https://doi.org/10.5306/wjco.v11.i8.573.

    Article  Google Scholar 

  168. Kriegs M, Kasten-Pisula U, Rieckmann T, Holst K, Saker J, Dahm-Daphi J, Dikomey E. The epidermal growth factor receptor modulates DNA double-strand break repair by regulating non-homologousend-joining. DNA Repair (Amst). 2010. https://doi.org/10.1016/j.dnarep.2010.05.005.

    Article  Google Scholar 

  169. Rodemann HP, Dittmann K, Toulany M. Radiation-induced EGFR-signaling and control of DNA-damage repair. Int J Radiat Biol. 2007. https://doi.org/10.1080/09553000701769970.

    Article  Google Scholar 

  170. Mahmoudi M, Gorenne I, Mercer J, Figg N, Littlewood T, Bennett M. Statins use a novel Nijmegen breakage syndrome-1-dependent pathway to accelerate DNA repair in vascular smooth muscle cells. Circ Res. 2008. https://doi.org/10.1161/CIRCRESAHA.108.182899.

    Article  Google Scholar 

  171. Ran XZ, Ran X, Zong ZW, Liu DQ, Xiang GM, Su YP, Zheng HE. Protective effect of atorvastatin on radiation-induced vascular endothelial cell injury in vitro. J Radiat Res. 2010. https://doi.org/10.1269/jrr.09119.

    Article  Google Scholar 

  172. Hosseinimehr SJ, Izakmehri M, Ghasemi A. In vitro protective effect of atorvastatin against ionizing radiation induced genotoxicity in human lymphocytes. Cell Mol Biol (Noisy-le-grand). 2015;61:68–71.

    CAS  Google Scholar 

  173. Naeimi RA, Talebpour Amiri F, Khalatbary AR, Ghasemi A, Zargari M, Ghesemi M, Hosseinimehr SJ. Atorvastatin mitigates testicular injuries induced by ionizing radiation in mice. Reprod Toxicol. 2017. https://doi.org/10.1016/j.reprotox.2017.06.052.

    Article  Google Scholar 

  174. Talebpour Amiri F, Hamzeh M, Naeimi RA, Ghasemi A, Hosseinimehr SJ. Radioprotective effect of atorvastatin against ionizing radiation-induced nephrotoxicity in mice. Int J Radiat Biol. 2018. https://doi.org/10.1080/09553002.2018.1420926.

    Article  Google Scholar 

  175. Yu H, Sun SQ, Gu XB, Wang W, Gao XS. Atorvastatin prolongs the lifespan of radiation-induced reactive oxygen species in PC-3 prostate cancer cells to enhance the cell killing effect. Oncol Rep. 2017. https://doi.org/10.3892/or.2017.5447.

    Article  Google Scholar 

  176. Freeberg MAT, Easa A, Lillis JA, Benoit DSW, van Wijnen AJ, Awad HA. Transcriptomic analysis of cellular pathways in healing flexor tendons of plasminogen activator inhibitor 1 (PAI-1/Serpine1) null mice. J Orthop Res. 2020. https://doi.org/10.1002/jor.24448.

    Article  Google Scholar 

  177. Guo B, Inoki K, Isono M, Mori H, Kanasaki K, Sugimoto T, Akiba S, Sato T, Yang B, Kikkawa R, Kashiwagi A, Haneda M, Koya D. MAPK/AP-1-dependent regulation of PAI-1 gene expression by TGF-beta in rat mesangial cells. Kidney Int. 2005. https://doi.org/10.1111/j.1523-1755.2005.00491.x.

    Article  Google Scholar 

  178. Kwak SH, Wang XQ, He Q, Fang WF, Mitra S, Bdeir K, Ploplis VA, Xu Z, Idell S, Cines D, Abraham E. Plasminogen activator inhibitor-1 potentiates LPS-induced neutrophil activation through a JNK-mediated pathway. Thromb Haemost. 2006;95:829–35.

    Article  CAS  Google Scholar 

  179. Nakajima K, Yamamoto S, Tohyama Y, Kohsaka S. Close association of p38 and JNK with plasminogen-dependent upregulation of PAI-1 in rat astrocytes in vitro. Neurosci Lett. 2010. https://doi.org/10.1016/j.neulet.2010.01.007.

    Article  Google Scholar 

  180. Paris F, Fuks Z, Kang A, Capodieci P, Juan G, Ehleiter D, Haimovitz-Friedman A, Cordon-Cardo C, Kolesnick R. Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science. 2001. https://doi.org/10.1126/science.1060191.

    Article  Google Scholar 

  181. Pontrelli P, Ranieri E, Ursi M, Ghosh-Choudhury G, Gesualdo L, Paolo Schena F, Grandaliano G. jun-N-terminal kinase regulates thrombin-induced PAI-1 gene expression in proximal tubular epithelial cells. Kidney Int. 2004. https://doi.org/10.1111/j.1523-1755.2004.00644.x.

    Article  Google Scholar 

  182. Vulin AI, Stanley FM. Oxidative stress activates the plasminogen activator inhibitor type 1 (PAI-1) promoter through an AP-1 response element and cooperates with insulin for additive effects on PAI-1 transcription. J Biol Chem. 2004. https://doi.org/10.1074/jbc.M403184200.

    Article  Google Scholar 

  183. Wang HC, Lin YL, Hsu CC, Chao YJ, Hou YC, Chiu TJ, Huang PH, Tang MJ, Chen LT, Shan YS. Pancreatic stellate cells activated by mutant KRAS-mediated PAI-1 upregulation foster pancreatic cancer progression via IL-8. Theranostics. 2019. https://doi.org/10.7150/thno.36830.

    Article  Google Scholar 

  184. Kwak SY, Park S, Kim H, Lee SJ, Jang WS, Kim MJ, Lee S, Jang WI, Kim AR, Kim EH, Shim S, Jang H. Atorvastatin inhibits endothelial PAI-1-mediated monocyte migration and alleviates radiation-induced enteropathy. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22041828.

    Article  Google Scholar 

  185. Ajamieh H, Farrell G, Wong HJ, Yu J, Chu E, Chen J, Teoh N. Atorvastatin protects obese mice against hepatic ischemia-reperfusion injury by toll-like receptor-4 suppression and endothelial nitric oxide synthase activation. J Gastroenterol Hepatol. 2012. https://doi.org/10.1111/j.1440-1746.2012.07123.x.

    Article  Google Scholar 

  186. Ghasemi A, Ghashghai Z, Akbari J, Yazdani-Charati J, Salehifar E, Hosseinimehr SJ. Topical atorvastatin 1% for prevention of skin toxicity in patients receiving radiation therapy for breast cancer: a randomized, double-blind, placebo-controlled trial. Eur J Clin Pharmacol. 2019. https://doi.org/10.1007/s00228-018-2570-x.

    Article  Google Scholar 

  187. Jenrow KA, Liu J, Brown SL, Kolozsvary A, Lapanowski K, Kim JH. Combined atorvastatin and ramipril mitigate radiation-induced impairment of dentate gyrus neurogenesis. J Neurooncol. 2011. https://doi.org/10.1007/s11060-010-0282-x.

    Article  Google Scholar 

  188. Checker R, Patwardhan RS, Jayakumar S, Maurya DK, Bandekar M, Sharma D, Sandur SK. Chemical and biological basis for development of novel radioprotective drugs for cancer therapy. Free Radic Res. 2021. https://doi.org/10.1080/10715762.2021.1876854.

    Article  Google Scholar 

  189. Schleicher SM, Moretti L, Varki V, Lu B. Progress in the unraveling of the endoplasmic reticulum stress/autophagy pathway and cancer: implications for future therapeutic approaches. Drug Resist Updat. 2010. https://doi.org/10.1016/j.drup.2010.04.002.

    Article  Google Scholar 

  190. Chan KK, Oza AM, Siu LL. The statins as anticancer agents. Clin Cancer Res. 2003;9:10–9.

    CAS  Google Scholar 

  191. Sassano A, Platanias LC. Statins in tumor suppression. Cancer Lett. 2008. https://doi.org/10.1016/j.canlet.2007.11.036.

    Article  Google Scholar 

  192. Apel A, Herr I, Schwarz H, Rodemann HP, Mayer A. Blocked autophagy sensitizes resistant carcinoma cells to radiation therapy. Cancer Res. 2008. https://doi.org/10.1158/0008-5472.CAN-07-0562.

    Article  Google Scholar 

  193. He Z, Mangala LS, Theriot CA, Rohde LH, Wu H, Zhang Y. Cell killing and radiosensitizing effects of atorvastatin in PC3 prostate cancer cells. J Radiat Res. 2012. https://doi.org/10.1269/jrr.11114.

    Article  Google Scholar 

  194. Hennessey D, Martin LM, Atzberger A, Lynch TH, Hollywood D, Marignol L. Exposure to hypoxia following irradiation increases radioresistance in prostate cancer cells. Urol Oncol. 2013. https://doi.org/10.1016/j.urolonc.2011.10.008.

    Article  Google Scholar 

  195. Chen B, Zhang M, Xing D, Feng Y. Atorvastatin enhances radiosensitivity in hypoxia-induced prostate cancer cells related with HIF-1α inhibition. 2017. Biosci Rep. https://doi.org/10.1042/BSR20170340.

    Article  Google Scholar 

  196. Ricco N, Flor A, Wolfgeher D, Efimova EV, Ramamurthy A, Appelbe OK, Brinkman J, Truman AW, Spiotto MT, Kron SJ. Mevalonate pathway activity as a determinant of radiation sensitivity in head and neck cancer. Mol Oncol. 2019. https://doi.org/10.1002/1878-0261.12535.

    Article  Google Scholar 

  197. He Z, Xu D, Shen F, Zeng F, Qi P, Zhai Z, Wang Z. Atorvastatin enhances inhibitory effects of irradiation on tumor growth by reducing MSH2 expression both in prostate cancer cells and xenograft tumor models. Anticancer Agents Med Chem. 2022. https://doi.org/10.2174/1871520621666210602133005.

    Article  Google Scholar 

  198. Ding N, Cui XX, Gao Z, Huang H, Wei X, Du Z, Lin Y, Shih WJ, Rabson AB, Conney AH, Hu C, Zheng X. A triple combination of atorvastatin, celecoxib and tipifarnib strongly inhibits pancreatic cancer cells and xenograft pancreatic tumors. Int J Oncol. 2014. https://doi.org/10.3892/ijo.2014.2350.

    Article  Google Scholar 

  199. Lehman TA, Modali R, Boukamp P, Stanek J, Bennett WP, Welsh JA, Metcalf RA, Stampfer MR, Fusenig N, Rogan EM, et al. p53 mutations in human immortalized epithelial cell lines. Carcinogenesis. 1993. https://doi.org/10.1093/carcin/14.5.833.

    Article  Google Scholar 

  200. Cauley JA, McTiernan A, Rodabough RJ, LaCroix A, Bauer DC, Margolis KL, Paskett ED, Vitolins MZ, Furberg CD, Chlebowski RT; Women's Health Initiative Research Group (2006) Statin use and breast cancer: prospective results from the Women's Health Initiative. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djj188

  201. Ali A, Levantini E, Fhu CW, Teo JT, Clohessy JG, Goggi JL, Wu CS, Chen L, Chin TM, Tenen DG. CAV1 - GLUT3 signaling is important for cellular energy and can be targeted by Atorvastatin in non-small cell lung cancer. Theranostics. 2019. https://doi.org/10.7150/thno.35805.

    Article  Google Scholar 

  202. Otahal A, Aydemir D, Tomasich E, Minichsdorfer C. Delineation of cell death mechanisms induced by synergistic effects of statins and erlotinib in non-small cell lung cancer cell (NSCLC) lines. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-57707-2.

    Article  Google Scholar 

  203. Wang H, Sun N, Li X, Li K, Tian J, Li J. Simvastatin suppresses cell migration and invasion, induces G0/G1 cell cycle arrest and apoptosis in osteosarcoma cells. Int J Clin Exp Pathol. 2016;9(6):5837–48.

    CAS  Google Scholar 

  204. Wolfe AR, Debeb BG, Lacerda L, Larson R, Bambhroliya A, Huang X, Bertucci F, Finetti P, Birnbaum D, Van Laere S, Diagaradjan P, Ruffell B, Trenton NJ, Chu K, Hittelman W, Diehl M, Levental I, Ueno NT, Woodward WA. Simvastatin prevents triple-negative breast cancer metastasis in pre-clinical models through regulation of FOXO3a. Breast Cancer Res Treat. 2015. https://doi.org/10.1007/s10549-015-3645-3.

    Article  Google Scholar 

  205. Li J, Liu J, Liang Z, He F, Yang L, Li P, Jiang Y, Wang B, Zhou C, Wang Y, Ren Y, Yang J, Zhang J, Luo Z, Vaziri C, Liu P. Simvastatin and Atorvastatin inhibit DNA replication licensing factor MCM7 and effectively suppress RB-deficient tumors growth. Cell Death Dis. 2017. https://doi.org/10.1038/cddis.2017.46.

    Article  Google Scholar 

  206. Zhou M, Zheng J, Bi J, Wu X, Lyu J, Gao K. Synergistic inhibition of colon cancer cell growth by a combination of atorvastatin and phloretin. Oncol Lett. 2018. https://doi.org/10.3892/ol.2017.7480.

    Article  Google Scholar 

  207. Terzi H, Altun A, Şencan M. In vitro comparison of the cytotoxic effects of statins on U266 myeloma cell line. Indian J Med Res. 2019. https://doi.org/10.4103/ijmr.IJMR_672_18.

    Article  Google Scholar 

  208. Göbel A, Breining D, Rauner M, Hofbauer LC, Rachner TD. Induction of 3-hydroxy-3-methylglutaryl-CoA reductase mediates statin resistance in breast cancer cells. Cell Death Dis. 2019. https://doi.org/10.1038/s41419-019-1322-x.

    Article  Google Scholar 

  209. Yang Z, Xiao H, Jin H, Koo PT, Tsang DJ, Yang CS. Synergistic actions of atorvastatin with gamma-tocotrienol and celecoxib against human colon cancer HT29 and HCT116 cells. Int J Cancer. 2010. https://doi.org/10.1002/ijc.24766.

    Article  Google Scholar 

  210. Kumar VL, Guruprasad B, Wahane VD. Atorvastatin exhibits anti-inflammatory and anti-oxidant properties in adjuvant-induced monoarthritis. Inflammopharmacology. 2010. https://doi.org/10.1007/s10787-010-0057-1.

    Article  Google Scholar 

  211. Farsaei S, Khalili H, Farboud ES. Potential role of statins on wound healing: review of the literature. Int Wound J. 2012. https://doi.org/10.1111/j.1742-481X.2011.00888.x.

    Article  Google Scholar 

  212. Kurçer Z, Özbakiş-Dengiz G, Füsun B, Banoğlu ZN (2017) Statinlerin Testiküler İskemi Reperfüzyon ile Oluşturulan Histopatolojik Hasar Üzerine Etkileri

  213. Marková I, Malínská H, Hüttl M, Miklánková D, Oliyarnyk O, Poruba M, Rácová Z, Kazdová L, Večeřa R. The combination of atorvastatin with silymarin enhances hypolipidemic, antioxidant and anti-inflammatory effects in a rat model of metabolic syndrome. Physiol Res. 2021. https://doi.org/10.33549/physiolres.934587.

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Alvandi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaghaghi, Z., Alvandi, M., Farzipour, S. et al. A review of effects of atorvastatin in cancer therapy. Med Oncol 40, 27 (2023). https://doi.org/10.1007/s12032-022-01892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-022-01892-9

Keywords

Navigation